
Укажите номер данного члена геометрической прогрессии 4; 12; 36; ...если bn= 972.С РЕШЕНИЕМ ПЖЛСТ.


Ответы на вопрос




Finding the nth Term of a Geometric Progression
To find the nth term of a geometric progression, we can use the formula:
a_n = a_1 * r^(n-1)
Where: - a_n = the nth term - a_1 = the first term - r = the common ratio - n = the term number
In this case, we are given that a_1 = 4 and a_n = 972. We need to find the value of n when a_n = 972.
Calculating the Term Number
Using the formula a_n = a_1 * r^(n-1), we can rearrange it to solve for n:
n = log(a_n / a_1) / log(r) Given that a_1 = 4 and a_n = 972, we need to find the common ratio r to calculate the term number n.
Finding the Common Ratio
To find the common ratio r, we can use the given terms of the geometric progression: 4, 12, 36.
r = term(n) / term(n-1)
r = 12 / 4 = 3
Now that we have the common ratio r = 3, we can calculate the term number n using the formula:
n = log(972 / 4) / log(3)
Calculating the Term Number
Let's calculate the term number n using the given values:
n = log(972 / 4) / log(3) n ≈ 5.0
So, the term number of the given member of the geometric progression 4, 12, 36, ... when a_n = 972 is approximately 5.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili