
ТЕМА- ЛОГАРИФМЫ1.log^2(3)x^3-20log(9)x +1=0^- степень(..)-по основанию2. решить
неравенствоa)log(6)(x^2+10x+24)<=1+log(6) (x+6)b) log^2(0,5)x-log(0,5)x^2>3подробное решение пожалуйста!

Ответы на вопрос

log(9)x=log(3)x/log(3)9=log(3)x/2
9log^2(3)x-10log(3)x+1=0
log(3)x=t
9t^2-10t+1=0
t=(5+-sqrt(25-9))/3=(5+-4)/3
t1=3
t2=1/3
log(3)x=3 x=3^3=27
log(3)x=1/3 x=-1
2. log(6)6+log(6)(x+6)=log(6)(6x+36)
x^2+10x+24<=6x+36
x^2+4x-12<=0
[-6;2]
x>-6 +
x^2+10x+24>0 x>-4 x<-6
ответ ]-4;2]
log^2(0,5)x-log(0,5)x^2>3
t^2-2t-3>0
t<-1
t>3
log(0,5)x>3 x<1/8
log(0,5)<-1 x>2
x>0
]0;1/8[ U]2;~[



Logarithmic Equations:
To solve the given logarithmic equation log^2(3)x^3 - 20log(9)x + 1 = 0, we can use the properties of logarithms and algebraic techniques. Let's break it down step by step:1. Combine the logarithms using the properties of logarithms: - log^2(3)x^3 - log(9)x^20 + 1 = 0
2. Apply the power rule of logarithms to simplify the equation: - log(3)(x^6) - log(9)x^20 + 1 = 0
3. Use the quotient rule of logarithms to combine the logarithms: - log(3)((x^6)/(9x^20)) + 1 = 0
4. Simplify the expression inside the logarithm: - log(3)((x^(-14))/9) + 1 = 0
5. Apply the logarithmic identity log(a)b = c is equivalent to b = a^c: - (x^(-14))/9 = 3^(-1)
6. Solve for x by isolating the variable: - Multiply both sides of the equation by 9: - (x^(-14)) = 3^(-1) * 9 - (x^(-14)) = 3^(-1) * 3^2 - (x^(-14)) = 3^1 - (x^(-14)) = 3 - Take the reciprocal of both sides to get rid of the negative exponent: - x^14 = 1/3 - Take the 14th root of both sides to solve for x: - x = (1/3)^(1/14)
Therefore, the solution to the equation log^2(3)x^3 - 20log(9)x + 1 = 0 is x = (1/3)^(1/14).
Logarithmic Inequalities:
Now let's solve the given logarithmic inequalities:a) log(6)(x^2 + 10x + 24) <= 1 + log(6)(x + 6)
To solve this inequality, we can use the properties of logarithms and algebraic techniques. Here's the step-by-step solution:
1. Combine the logarithms using the properties of logarithms: - log(6)(x^2 + 10x + 24) - log(6)(x + 6) <= 1
2. Apply the quotient rule of logarithms to simplify the inequality: - log(6)((x^2 + 10x + 24)/(x + 6)) <= 1
3. Rewrite the inequality using the logarithmic identity log(a)b <= c is equivalent to b <= a^c: - (x^2 + 10x + 24)/(x + 6) <= 6^1
4. Simplify the expression inside the logarithm: - (x^2 + 10x + 24)/(x + 6) <= 6
5. Solve the inequality by considering two cases: - Case 1: x + 6 > 0 (no need to flip the inequality) - x^2 + 10x + 24 <= 6(x + 6) - x^2 + 10x + 24 <= 6x + 36 - x^2 + 4x - 12 <= 0 - (x + 6)(x - 2) <= 0 - The solution for this case is -6 <= x <= 2.
- Case 2: x + 6 < 0 (flip the inequality) - (x^2 + 10x + 24)/(x + 6) >= 6 - x^2 + 10x + 24 >= 6(x + 6) - x^2 + 10x + 24 >= 6x + 36 - x^2 + 4x - 12 >= 0 - (x + 6)(x - 2) >= 0 - The solution for this case is x <= -6 or x >= 2.
- Combining the solutions from both cases, the solution to the inequality is x <= -6 or -6 <= x <= 2.
b) log^2(0.5)x - log(0.5)x^2 > 3
To solve this inequality, we can use the properties of logarithms and algebraic techniques. Here's the step-by-step solution:
1. Combine the logarithms using the properties of logarithms: - log^2(0.5)x - log(0.5)x^2 > 3
2. Apply the logarithmic identity log(a)b - log(a)c = log(a)(b/c): - log(0.5)(x^2/x^2) > 3
3. Simplify the expression inside the logarithm: - log(0.5)(1/x^2) > 3
4. Apply the logarithmic identity log(a)b > c is equivalent to b > a^c: - 1/x^2 > 0.5^3
5. Simplify the right side of the inequality: - 1/x^2 > 0.125
6. Take the reciprocal of both sides to get rid of the fraction: - x^2 < 1/0.125
7. Simplify the right side of the inequality: - x^2 < 8
8. Take the square root of both sides to solve for x: - -√8 < x < √8
Therefore, the solution to the inequality log^2(0.5)x - log(0.5)x^2 > 3 is -√8 < x < √8.
Please note that these solutions are based on the given equations and inequalities. Make sure to double-check the calculations and consider any restrictions on the domain of the logarithmic functions.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili