Вопрос задан 18.02.2019 в 09:20. Предмет Алгебра. Спрашивает Кузьмина Виктория.

1. (30-x)·x-(30-x+10)(x-6)=32 2. (2x-10)(x+8)-2x·x=220 3. 3(25-x)-2(25+x)=5 4. 2(10+x)+3·10=54 5.

2x= \frac{7}{4} (x+10)
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Baran Yulia.
3.000.00 вигня какято
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

To solve the given equations, let's simplify each equation step by step and find the value of x.

Equation 1:

(30-x)·x - (30-x+10)(x-6) = 32

Expanding the equation: (30x - x^2) - (40 - x)(x - 6) = 32

Multiplying the terms inside the parentheses: 30x - x^2 - (40x - 6x - 6x + 36) = 32

Simplifying further: 30x - x^2 - (40x - 12x + 36) = 32 30x - x^2 - 40x + 12x - 36 = 32 - x^2 - 38x - 36 = 32 - x^2 - 38x - 36 - 32 = 0 - x^2 - 38x - 68 = 0

Rearranging the equation: x^2 + 38x + 68 = 0

Now, we can solve this quadratic equation using factoring, completing the square, or the quadratic formula.

Since the equation doesn't factor easily, let's use the quadratic formula to find the solutions for x:

The quadratic formula is given by: x = (-b ± sqrt(b^2 - 4ac))/(2a)

For our equation, a = 1, b = 38, and c = 68. Substituting these values into the quadratic formula:

x = (-38 ± sqrt(38^2 - 4 * 1 * 68))/(2 * 1)

Simplifying the equation: x = (-38 ± sqrt(1444 - 272))/2 x = (-38 ± sqrt(1172))/2 x = (-38 ± sqrt(4 * 293))/2 x = (-38 ± 2sqrt(293))/2

Simplifying further: x = -19 ± sqrt(293)

Therefore, the solutions for Equation 1 are: x = -19 + sqrt(293) and x = -19 - sqrt(293)

Equation 2:

(2x - 10)(x + 8) - 2x·x = 220

Expanding the equation: 2x^2 + 16x - 10x - 80 - 2x^2 = 220

Combining like terms: 6x - 80 = 220

Adding 80 to both sides: 6x = 300

Dividing both sides by 6: x = 50

Therefore, the solution for Equation 2 is: x = 50

Equation 3:

3(25 - x) - 2(25 + x) = 5

Simplifying the equation: 75 - 3x - 50 - 2x = 5

Combining like terms: -5x + 25 = 5

Subtracting 25 from both sides: -5x = -20

Dividing both sides by -5: x = 4

Therefore, the solution for Equation 3 is: x = 4

Equation 4:

2(10 + x) + 3 · 10 = 54

Simplifying the equation: 20 + 2x + 30 = 54

Combining like terms: 2x + 50 = 54

Subtracting 50 from both sides: 2x = 4

Dividing both sides by 2: x = 2

Therefore, the solution for Equation 4 is: x = 2

Equation 5:

2x + 7/4 + (x + 10) = 0

Combining like terms: 2x + x + 10 + 7/4 = 0

Adding the fractions: 2x + x + 10 + 7/4 = 0 2x + x + 10 + 1.75 = 0 3x + 11.75 = 0

Subtracting 11.75 from both sides: 3x = -11.75

Dividing both sides by 3: x = -11.75/3

Therefore, the solution for Equation 5 is: x = -11.75/3

To summarize, the solutions for the given equations are: Equation 1: x = -19 + sqrt(293) and x = -19 - sqrt(293) Equation 2: x = 50 Equation 3: x = 4 Equation 4: x = 2 Equation 5: x = -11.75/3

0 0

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос