
Решите уравнение (х^2+8x)^2 - 4(x+4)^2=256,используя метод введения новой переменной


Ответы на вопрос







Solving the Equation using the Method of Introducing a New Variable
To solve the equation *(x^2 + 8x)^2 - 4(x+4)^2 = 256* using the method of introducing a new variable, we can follow these steps:
1. Let's introduce a new variable *y* such that *y = (x^2 + 8x)*. 2. Then the given equation becomes *y^2 - 4(x+4)^2 = 256*.
Now, we can solve for *y* and then substitute back to find the values of *x*.
Substituting the New Variable
Let's substitute *y = (x^2 + 8x)* into the equation:
*(x^2 + 8x)^2 - 4(x+4)^2 = 256* becomes *y^2 - 4(x+4)^2 = 256*.
Solving for y
Now, we can solve for *y* using the equation *y^2 - 4(x+4)^2 = 256*.
*y^2 - 4(x+4)^2 = 256* can be rewritten as *y^2 = 4(x+4)^2 + 256*.
Simplifying the Equation
Simplify the equation by expanding the terms and solving for *y*.
*y^2 = 4(x+4)^2 + 256* becomes *y^2 = 4(x^2 + 8x + 16) + 256*, *y^2 = 4x^2 + 32x + 64 + 256*, *y^2 = 4x^2 + 32x + 320*.
Solving for x
Now that we have the equation *y^2 = 4x^2 + 32x + 320*, we can solve for *x*.
This is a quadratic equation in terms of *x*, and we can solve for *x* using the quadratic formula: x = (-b ± √(b^2 - 4ac)) / (2a), where the coefficients are: - a = 4 - b = 32 - c = 320
Conclusion
By solving the quadratic equation for *x*, we can find the values of *x* that satisfy the original equation *(x^2 + 8x)^2 - 4(x+4)^2 = 256* using the method of introducing a new variable.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili