
Вопрос задан 25.04.2018 в 18:26.
Предмет Алгебра.
Спрашивает Оня Мария.
Найти остаток от деления а=2^227+3^94+7^57 на 10


Ответы на вопрос

Отвечает Микаилзаде Магомед.
Остаток от деления на 10 - это последняя цифра числа. Любое число в 5 степени заканчивается на ту же цифру, что и само число.
Разложим каждое слагаемое и найдём последние цифры.
2^227=2^225*2^2=(2^5)^45*4 =2^45*4=(2^5)^9*4=2^9*4= 2^5*2^4*4=2*16*4=8*6=48=8.
3^94=3^90*3^4=(3^5)^18*81= 3^18*1=3^15*3^3=(3^5)^3*27= 3^3*7=27*7=7*7=49=9.
7^57=7^55*7^2=(7^5)^11*49= 7^11*9=7^10*7*9=(7^5)^2*63= 7^2*3=49*3=9*3=27=7.
Складываем эти последние цифры.
8+9+7=24=4.
Ответ: 4


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili