Вопрос задан 28.01.2019 в 15:55. Предмет Алгебра. Спрашивает Ахмедиярова Актоты.

Как разложить факториал число 1980! на простые множители?

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Шокыбаев Ертос.
Выведем общую формулу для разложения числа n! на простые множители. Запишем это разложение в виде n!=p_1^{a_1}\cdot\ldots\cdot p_k^{a_k}, где p_i - все простые числа не превосходящие n и a_i - степени, с которыми они входят в это разложение, i=1,...,k.  Докажем, что a_i=[n/p_i]+[n/p_i^2]+[n/p_i^3]+\ldots, где [...] обозначает целую часть числа, т.е. для действительного числа х, запись [x] обозначает максимальное целое число не превосходящее х. Заметим, что в этой сумме всегда конечное число слагаемых, т.к. рано или поздно степень простого станет больше n, и с этого момента под целой частью будут числа меньшие 1, т.е. целая часть от них будет равна 0.

Доказательство. Пусть p - любое простое от 1 до n включительно. Понятно, что в разложении числа n! на простые множители будут встречаться только такие простые числа. Среди чисел 1, 2,...,n количество чисел делящихся на p равно [n/p]. Т.к. среди них есть числа делящиеся на p², p³,..., то количество чисел среди них, которые делятся на p только в первой степени равно [n/p]-[n/p²], т.е. мы из всех делящихся на р вычли все, делящиеся на р². Аналогично, количество чисел в ряду 1,...,n делящихся ровно на p² и не делящихся на p в степенях больших 2, равно [n/p²]-[n/p³]. Для степени p³ таких чисел будет [n/p³]-[n/p⁴] и т.д... Таким образом, количество чисел, у которых в разложении на простые p входит в разложение ровно в j-ой степени равно [n/p^j]-[n/p^{j+1}]

Значит в разложении n! на простые множители простое p входит в степени
([n/p]-[n/p²])+2([n/p²]-[n/p³])+3([n/p³]-[n/p⁴])+...=[n/p]+[n/p²]+[n/p³])+... 
Как уже упоминал раньше, с некоторой степени все целые части [n/p^j] будут равны 0, т.к. n/p^j станет меньше 1 при больших j (а именно, при j>[ln(n)/ln(p)]).

Итак, чтобы разложить число 1980! нужно подставить n=1980 в эту формулу. Получаем, что 2 входит в разложение в степени
[1980/2]+[1980/2²]+[1980/2³]+...+[1980/2¹⁰]=
=990+495+247+123+61+30+15+7+3+1=1972. Т.к. 1980/2¹¹<1, 1980/2¹²<1 и т.д., то все слагаемые после [1980/2¹⁰] будут равны 0.
Аналогично, [1980/3]+[1980/3²]+[1980/3³]+...+[1980/3⁶]=
=660+220+73+24+8+2=987. И т.д.
В итоге получаем то, что изображено на картинке.
0 0

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос