
Вопрос задан 13.11.2018 в 16:18.
Предмет Алгебра.
Спрашивает Валерко Каміла.
Найти f'(3) и f'(1) если f(x) = x^3+x^2


Ответы на вопрос

Отвечает Криницына Елизавета.
F'(x)=3x^2+2x
f'(3)=3*9+2*3=33
f'(1)=5
f'(3)=3*9+2*3=33
f'(1)=5



Отвечает Евтушенко Ульяна.
F(x) = x^3 + x^2
f'(x)= 3x^2 + 2x
f'(3) = 3*3^2 + 2*3 = 3*9 + 6 = 33
f'(1) = 3*1^2 + 2*1 = 3 + 2 = 5
f'(x)= 3x^2 + 2x
f'(3) = 3*3^2 + 2*3 = 3*9 + 6 = 33
f'(1) = 3*1^2 + 2*1 = 3 + 2 = 5


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili