
Решите системы:^x^2+y^2=74x+y=12ещеx^2+y^2=10x+y=4С решением, пожалуйста. Очень нужно


Ответы на вопрос

см.рис.
===============================





System of Equations 1:
The given system of equations is:Equation 1: x^2 + y^2 = 74 Equation 2: x + y = 12
To solve this system of equations, we can use the method of substitution or elimination. Let's use the substitution method.
From Equation 2, we can express x as x = 12 - y.
Substituting this value of x into Equation 1, we get:
(12 - y)^2 + y^2 = 74
Expanding and simplifying the equation, we have:
144 - 24y + y^2 + y^2 = 74
Combining like terms, we get:
2y^2 - 24y + 70 = 0
Dividing the equation by 2, we have:
y^2 - 12y + 35 = 0
Now, we can solve this quadratic equation for y. Factoring the equation, we get:
(y - 5)(y - 7) = 0
Setting each factor equal to zero, we have:
y - 5 = 0 --> y = 5 y - 7 = 0 --> y = 7
So, we have two possible values for y: y = 5 and y = 7.
Now, let's substitute these values back into Equation 2 to find the corresponding values of x.
For y = 5: x + 5 = 12 x = 12 - 5 x = 7
For y = 7: x + 7 = 12 x = 12 - 7 x = 5
Therefore, the solutions to the first system of equations are: (x, y) = (7, 5) and (x, y) = (5, 7).
System of Equations 2:
The given system of equations is:Equation 1: x^2 + y^2 = 10 Equation 2: x + y = 4
Again, we can use the method of substitution or elimination to solve this system of equations. Let's use the substitution method.
From Equation 2, we can express x as x = 4 - y.
Substituting this value of x into Equation 1, we get:
(4 - y)^2 + y^2 = 10
Expanding and simplifying the equation, we have:
16 - 8y + y^2 + y^2 = 10
Combining like terms, we get:
2y^2 - 8y + 6 = 0
Dividing the equation by 2, we have:
y^2 - 4y + 3 = 0
Now, we can solve this quadratic equation for y. Factoring the equation, we get:
(y - 1)(y - 3) = 0
Setting each factor equal to zero, we have:
y - 1 = 0 --> y = 1 y - 3 = 0 --> y = 3
So, we have two possible values for y: y = 1 and y = 3.
Now, let's substitute these values back into Equation 2 to find the corresponding values of x.
For y = 1: x + 1 = 4 x = 4 - 1 x = 3
For y = 3: x + 3 = 4 x = 4 - 3 x = 1
Therefore, the solutions to the second system of equations are: (x, y) = (3, 1) and (x, y) = (1, 3).
I hope this helps! Let me know if you have any further questions.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili