Вопрос задан 09.08.2018 в 04:21. Предмет Алгебра. Спрашивает Ильина Маша.

Кто знает, как решить логарифмы?y= lg ( 10x - 7) = -1

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Мишекурин Александр.
y= lg ( 10x - 7) = -1
 lg ( 10x - 7)= lg 0.1
10x-7=0.1
10x=7.1
x=0.71
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Чтобы решить данное уравнение с логарифмами, мы сначала должны избавиться от логарифма на левой стороне уравнения.

Для этого мы можем применить основное свойство логарифма, которое гласит: если logₐ(b) = c, то a^c = b.

В данном уравнении, у нас есть логарифм по основанию 10. Таким образом, мы можем переписать уравнение в эквивалентной форме:

10^(-1) = 10x - 7.

Теперь мы можем решить это уравнение относительно x:

1/10 = 10x - 7.

Добавим 7 к обеим сторонам уравнения:

1/10 + 7 = 10x.

Упростим:

71/10 = 10x.

Теперь разделим обе стороны уравнения на 10:

71/10 / 10 = x.

Упростим:

71/100 = x.

Таким образом, решение уравнения lg(10x - 7) = -1 равно x = 71/100.

0 0

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос