 
доказать что n^3+3n^2+5n+3 нацело делиться на 3 методом математической индукции
 0
        0
         0
        0
    Ответы на вопрос
 
        1 шаг n=1 n^3+3n^2+5n+3=12 делится на 3.
2 шаг Пусть n=k k^3+3k^2+5k+3 делится на 3.
3 шаг n=k+1 (k+1)^3+3(k+1)^2+5(k+1)+3=
= k^3+3k^2+5k+3 +3k^2+3k+1+6k+3+5=(k^3+3k^2+5k+3) +3(k^2+2k+3) делится на 3, так как (k^3+3k^2+5k+3)делится на 3 по шагу 2 а 3(k^2+2k+3) делится на 3 из-за множетеля 3. ЧТД!
 0
                    0
                     0
                    0
                 
            Proof that n^3 + 3n^2 + 5n + 3 is divisible by 3 using mathematical induction
To prove that the expression n^3 + 3n^2 + 5n + 3 is divisible by 3 for all positive integers n, we will use the method of mathematical induction.
Step 1: Base Case We start by verifying the statement for the base case, which is usually n = 1. Let's substitute n = 1 into the expression and check if it is divisible by 3:
1^3 + 3(1)^2 + 5(1) + 3 = 1 + 3 + 5 + 3 = 12
Since 12 is divisible by 3, the statement holds true for the base case.
Step 2: Inductive Hypothesis Assume that the statement is true for some positive integer k, i.e., k^3 + 3k^2 + 5k + 3 is divisible by 3.
Step 3: Inductive Step We need to prove that the statement holds for the next positive integer, which is k + 1. Let's substitute n = k + 1 into the expression and simplify:
(k + 1)^3 + 3(k + 1)^2 + 5(k + 1) + 3 = k^3 + 3k^2 + 3k + 1 + 3(k^2 + 2k + 1) + 5k + 5 + 3 = (k^3 + 3k^2 + 5k + 3) + (3k^2 + 6k + 4) = (k^3 + 3k^2 + 5k + 3) + 3(k^2 + 2k + 1 + 1)
From the inductive hypothesis, we know that k^3 + 3k^2 + 5k + 3 is divisible by 3. Additionally, 3(k^2 + 2k + 1 + 1) is also divisible by 3 since it is a multiple of 3. Therefore, the entire expression is divisible by 3.
Step 4: Conclusion By the principle of mathematical induction, we have shown that for any positive integer n, the expression n^3 + 3n^2 + 5n + 3 is divisible by 3.
 0
                    0
                     0
                    0
                Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
- 
			Математика 
- 
			Литература 
- 
			Алгебра 
- 
			Русский язык 
- 
			Геометрия 
- 
			Английский язык 
- 
			Химия 
- 
			Физика 
- 
			Биология 
- 
			Другие предметы 
- 
			История 
- 
			Обществознание 
- 
			Окружающий мир 
- 
			География 
- 
			Українська мова 
- 
			Информатика 
- 
			Українська література 
- 
			Қазақ тiлi 
- 
			Экономика 
- 
			Музыка 
- 
			Право 
- 
			Беларуская мова 
- 
			Французский язык 
- 
			Немецкий язык 
- 
			МХК 
- 
			ОБЖ 
- 
			Психология 
- 
			Физкультура и спорт 
- 
			Астрономия 
- 
			Кыргыз тили 
- 
			Оʻzbek tili 
 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			