
Pomogite pojaluista srochno nado! algebra za 7 klass.sokratite drobi:1)3a^2 – 6ab +
3b^2/6a^2-6b^22)2a^3-2b^3/5a^2-5b^23)a^3-b^3/a^4-b^44)2a+4/a^3+85)3n^2-3m^2/6m^3+6n^36)x^6-x^8/x^4-x^2Zaranee vsem ogromnoe spasibo)

Ответы на вопрос

1) 74ab^3-36a^2b^2+3b^2-12a^3b+6a^4/2a^2-12b^2
2)8b^3-2a^3/25b^2-5a^2
3)b^2+ab+a^2/b^3+ab^2 +a^2b+a^3
4) 2a+4/a^3+8
5) n^2-3m^2/2n^3+74m^3
6)-x^4



Simplifying Fractions
To simplify the given fractions, we can factorize the numerator and denominator and cancel out common factors. Let's simplify each fraction one by one.
1) 3a^2 - 6ab + 3b^2 / 6a^2 - 6b^2
To simplify this fraction, we can factorize the numerator and denominator:
Numerator: 3a^2 - 6ab + 3b^2 = 3(a^2 - 2ab + b^2) = 3(a - b)^2 Denominator: 6a^2 - 6b^2 = 6(a^2 - b^2) = 6(a - b)(a + b)
Now we can cancel out the common factor (a - b) from the numerator and denominator:
3(a - b)^2 / 6(a - b)(a + b) = (a - b) / 2(a + b)
2) 2a^3 - 2b^3 / 5a^2 - 5b^2
To simplify this fraction, we can factorize the numerator and denominator:
Numerator: 2a^3 - 2b^3 = 2(a^3 - b^3) = 2(a - b)(a^2 + ab + b^2) Denominator: 5a^2 - 5b^2 = 5(a^2 - b^2) = 5(a - b)(a + b)
Now we can cancel out the common factor (a - b) from the numerator and denominator:
2(a - b)(a^2 + ab + b^2) / 5(a - b)(a + b) = 2(a^2 + ab + b^2) / 5(a + b)
3) a^3 - b^3 / a^4 - b^4
To simplify this fraction, we can factorize the numerator and denominator:
Numerator: a^3 - b^3 = (a - b)(a^2 + ab + b^2) Denominator: a^4 - b^4 = (a^2 - b^2)(a^2 + b^2) = (a - b)(a + b)(a^2 + b^2)
Now we can cancel out the common factor (a - b) from the numerator and denominator:
(a - b)(a^2 + ab + b^2) / (a - b)(a + b)(a^2 + b^2) = 1 / (a + b)
4) 2a + 4 / a^3 + 8
To simplify this fraction, we can't factorize the numerator and denominator further. So, the fraction remains as it is:
2a + 4 / a^3 + 8
5) 3n^2 - 3m^2 / 6m^3 + 6n^3
To simplify this fraction, we can't factorize the numerator and denominator further. So, the fraction remains as it is:
3n^2 - 3m^2 / 6m^3 + 6n^3
6) x^6 - x^8 / x^4 - x^2
To simplify this fraction, we can factorize the numerator and denominator:
Numerator: x^6 - x^8 = x^6(1 - x^2) = x^6(1 - x)(1 + x) Denominator: x^4 - x^2 = x^2(x^2 - 1) = x^2(x - 1)(x + 1)
Now we can cancel out the common factor (1 - x) from the numerator and denominator:
x^6(1 + x) / x^2(x - 1)(x + 1) = x^4(1 + x) / (x - 1)(x + 1)
I hope this helps! Let me know if you have any further questions.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili