
В геометрической прогрессии найти: 2) b1 и b8,Если q=-2 , S8=85


Ответы на вопрос

-------------------
В геометрической прогрессии найти: b₁ и b₈ ,если q=-2 , S₈=85
----------------------------------
S₈ =b₁(1-q⁸)/(1-q) ;
85 =b₁(1-(-2)⁸)/(1-(-2) ;
85 =-(255/ 3 ) *b₁ ;
b₁ = -1.
---
b₈ =b₁q⁷
b₈ =(-1)*(-2)⁷ =128.
ответ: b₁ = -1 ; b₈ =128.



Finding the First Term (b1) and the Eighth Term (b8) in a Geometric Progression
In a geometric progression, each term is found by multiplying the previous term by a constant ratio. The formula for finding the nth term of a geometric progression is:
bn = b1 * q^(n-1)
where bn represents the nth term, b1 is the first term, q is the common ratio, and n is the position of the term.
In this case, we are given the following information:
- q = -2 (the common ratio) - S8 = 85 (the sum of the first 8 terms)
To find the first term (b1) and the eighth term (b8), we need to use the formula for the nth term and the formula for the sum of a geometric progression.
Finding the First Term (b1)
To find the first term (b1), we can use the formula for the sum of a geometric progression:
Sn = b1 * (1 - q^n) / (1 - q)
where Sn represents the sum of the first n terms.
In this case, we are given that S8 = 85. Substituting this into the formula, we have:
85 = b1 * (1 - (-2)^8) / (1 - (-2))
Simplifying the equation, we get:
85 = b1 * (1 - 256) / 3
Multiplying both sides by 3, we have:
255 = b1 * (-255)
Dividing both sides by -255, we find:
b1 = -1
Therefore, the first term (b1) in the geometric progression is -1.
Finding the Eighth Term (b8)
Now that we know the first term (b1) is -1, we can use the formula for the nth term to find the eighth term (b8).
b8 = b1 * q^(8-1)
Substituting the given value of q = -2, we have:
b8 = -1 * (-2)^(8-1)
Simplifying the equation, we get:
b8 = -1 * (-2)^7
Evaluating the expression, we have:
b8 = -1 * (-128)
b8 = 128
Therefore, the eighth term (b8) in the geometric progression is 128.
To summarize, in the given geometric progression with a common ratio (q) of -2 and a sum of the first 8 terms (S8) equal to 85, the first term (b1) is -1 and the eighth term (b8) is 128.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili