
Найдите х, при котором числа х-2, 2х-1, х2-5 составляют арифметическую прогрессию


Ответы на вопрос

По основному свойству арифметической прогрессии,
а₂=
Значит,
2х-1=
4x-2=
x₁=
x₂=



Арифметическая прогрессия - это последовательность чисел, в которой разность между любыми двумя последовательными числами одинакова.
Для того чтобы найти х, при котором числа x-2, 2x-1, x^2-5 составляют арифметическую прогрессию, мы можем использовать свойство арифметической прогрессии, которое гласит, что разность между любыми двумя последовательными членами равна постоянной величине.
Таким образом, мы можем записать уравнение:
(2x-1) - (x-2) = (x^2-5) - (2x-1)
Раскроем скобки:
2x-1 - x + 2 = x^2-5 - 2x + 1
Упростим уравнение:
x + 1 = x^2 - 5 - 2x + 1
Перенесем все члены в одну часть уравнения:
x^2 - 4x - 4 = 0
Теперь решим квадратное уравнение, используя квадратное уравнение:
D = (-4)^2 - 4*1*(-4) = 16 + 16 = 32
x1,2 = (4 +- √32) / 2*1
x1 = (4 + √32) / 2 = (4 + 4√2) / 2 = 2 + 2√2 x2 = (4 - √32) / 2 = (4 - 4√2) / 2 = 2 - 2√2
Таким образом, у нас два значения x, при которых числа x-2, 2x-1, x^2-5 составляют арифметическую прогрессию: x = 2 + 2√2 и x = 2 - 2√2.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili