Вопрос задан 29.11.2023 в 00:08. Предмет Алгебра. Спрашивает Чистякова Елизавета.

Решите уравнение 42x²-21x+2=0.​

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Алферов Тихон.

Ответ:

x1= -21+корень(105)/84;

x2= -21 - корень(105)/84.

Объяснение:

d=b^2-4ac=21^2 - 4 * 42 * 2 = Корень(105).

x1 = b+Корень(105)/2a = -21 + корень(150)/2*42= -21 + Корень(105)/84;

x2 = b + Корень(105)/2a = -21 - корень(150)/2*42 = -21 - корень(105)/84.

0 0
Отвечает Роговская Лина.

Ответ:

будем решать через дискриминант ,так как это квадратное уравнение.

а= 42; b= -21; с= 2

D= b²-4ac=-21²-4×42×2=441-336=105(D больше нуля⇒2 корня)

x₁=\frac{-b+\sqrt{D} }{2a}= \frac{21+\sqrt{105} }{2*42}= \frac{21+\sqrt{105} }{84}

x₂= \frac{-b-\sqrt{D} }{2a}= \frac{21-\sqrt{105} }{2*42}= \frac{21-\sqrt{105} }{84}

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для решения уравнения 42x²-21x+2=0, нужно сначала найти дискриминант D, который равен b²-4ac, где a, b и c - это коэффициенты уравнения. В данном случае, a=42, b=-21 и c=2, поэтому D=(-21)²-4(42)(2)=441-336=105. Затем, нужно найти корни уравнения x, которые равны (-b±√D)/2a. В данном случае, x=(-(-21)±√105)/2(42)=(21±√105)/84. Это можно упростить, разделив числитель и знаменатель на 21, получая x=(1±√5)/4. Это ответ в виде дробей. Если нужно получить ответ в виде десятичных чисел, то можно приблизительно округлить √5 до 2,236 и подставить его в формулу, получая x=(1±2,236)/4. Тогда, x1=(1+2,236)/4≈0,809 и x2=(1-2,236)/4≈-0,309. Это ответ в виде десятичных чисел с точностью до трёх знаков после запятой.

0 0

Похожие вопросы

Алгебра 0 Зийнединов Бекир

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос