
Вопрос задан 28.11.2023 в 00:50.
Предмет Алгебра.
Спрашивает Войтех Иван.
Розв'язати рівняння (х+2)^2+(х-3у)^2=0


Ответы на вопрос

Отвечает Попов Адриан.
Удачи ))))))))))))))))




Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.
Коли ми маємо рівняння \((x + 2)^2 + (x - 3y)^2 = 0\), ми спробуємо знайти значення \(x\) і \(y\), що задовольняють це рівняння. Але зверніть увагу, що в цьому випадку сума квадратів двох виразів дорівнює 0. Оскільки квадрат будь-якого числа завжди не менше 0 (тобто він може бути 0 або більше), то сума двох квадратів також не може бути менше 0.
Отже, коли \(x\) і \(y\) є дійсними числами, неможливо, щоб сума квадратів дорівнювала нулю, якщо обидва вони не дорівнюють нулю одночасно. Це означає, що немає розв'язків цього рівняння в області дійсних чисел.
Таким чином, рівняння \((x + 2)^2 + (x - 3y)^2 = 0\) не має дійсних значень \(x\) і \(y\), які задовольняють його.


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili