Вопрос задан 16.11.2023 в 06:05. Предмет Алгебра. Спрашивает Сазонова Валерия.

Розв'яжіть систему рівнянь: 5у-6х=4, { 7х-4у=-1; И если можно,то помимо ответа еще и решения,

пожалуйста
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Непомнящий Рома.

Ответ: х=1 ; у=2 _____________________________


0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Давайте решим данную систему уравнений методом подстановки или методом сложения/вычитания.

Система уравнений:

1. \(5y - 6x = 4\) 2. \(7x - 4y = -1\)

Давайте решим систему пошагово. Для этого представим одно из уравнений относительно одной из переменных и подставим это выражение в другое уравнение.

Из первого уравнения выразим \(y\):

\[5y - 6x = 4\] \[5y = 6x + 4\] \[y = \frac{6x}{5} + \frac{4}{5}\]

Теперь подставим это значение \(y\) во второе уравнение:

\[7x - 4\left(\frac{6x}{5} + \frac{4}{5}\right) = -1\]

Упростим уравнение, умножив все слагаемые на 5, чтобы избавиться от дробей:

\[35x - 24x - 4(4) = -5\]

\[11x - 16 = -5\]

\[11x = 11\]

\[x = 1\]

Теперь, когда мы найдем \(x\), подставим его обратно в одно из исходных уравнений (для удобства выберем первое уравнение):

\[5y - 6(1) = 4\]

\[5y - 6 = 4\]

\[5y = 10\]

\[y = 2\]

Таким образом, решение системы уравнений:

\[x = 1, \quad y = 2\]

Если у вас есть дополнительные вопросы или что-то не ясно, пожалуйста, дайте знать!

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос