
Find the difference and 201 terms of the arithmetic progression 26, 29, 32


Ответы на вопрос




An arithmetic progression (AP) is a sequence of numbers in which the difference of any two successive members is a constant. This constant difference is commonly denoted by \(d\).
The general form of an arithmetic progression is given by:
\[ a_n = a_1 + (n-1)d \]
where: - \( a_n \) is the \(n\)-th term, - \( a_1 \) is the first term, - \( d \) is the common difference, and - \( n \) is the term number.
In your case, the given arithmetic progression is 26, 29, 32, ... where \( a_1 = 26 \) and the common difference \( d = 29 - 26 = 3 \).
Now, let's find the difference and the 201st term.
Difference (\(d\)):
The common difference \( d \) is simply the difference between any two successive terms. In this case:
\[ d = 29 - 26 = 3 \]
So, the common difference is 3.
\(n\)-th Term (\(a_{201}\)):
The formula for the \(n\)-th term of an arithmetic progression is:
\[ a_n = a_1 + (n-1)d \]
We want to find the 201st term (\(a_{201}\)), so substitute \( n = 201 \), \( a_1 = 26 \), and \( d = 3 \) into the formula:
\[ a_{201} = 26 + (201-1) \times 3 \]
\[ a_{201} = 26 + 200 \times 3 \]
\[ a_{201} = 26 + 600 \]
\[ a_{201} = 626 \]
So, the 201st term of the arithmetic progression is 626.
In summary: - The common difference (\(d\)) is 3. - The 201st term (\(a_{201}\)) is 626.


Похожие вопросы
Топ вопросов за вчера в категории Алгебра






Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili