
Помогите пожалуйста a)x^2-x+1=0 в)x^2+3x-2=0 д)x^2-2x+1=0


Ответы на вопрос

Ответ:
Воспользуемся Теоремой Виета
Объяснение:
а)х²-х+1
х1,2=1
в)х²+3х-2
х1=1
х2=-2
д)х²-2х+1
х1=2
х2=-1



a) Для решения уравнения x^2 - x + 1 = 0, мы можем использовать квадратное уравнение или метод нахождения корней. Начнем с использования метода квадратного уравнения.
Формула для нахождения корней квадратного уравнения ax^2 + bx + c = 0 имеет вид:
x = (-b ± √(b^2 - 4ac)) / 2a.
В данном случае, a = 1, b = -1 и c = 1.
x = (1 ± √((-1)^2 - 4*1*1)) / 2*1.
x = (1 ± √(1 - 4)) / 2.
x = (1 ± √(-3)) / 2.
Корни квадратного уравнения не могут быть найдены в множестве действительных чисел, так как значение подкоренного выражения отрицательное. Следовательно, уравнение x^2 - x + 1 = 0 не имеет действительных корней.
b) Для решения уравнения x^2 + 3x - 2 = 0, мы также можем использовать метод квадратного уравнения или метод нахождения корней.
В данном случае, a = 1, b = 3 и c = -2.
x = (-3 ± √(3^2 - 4*1*(-2))) / 2*1.
x = (-3 ± √(9 + 8)) / 2.
x = (-3 ± √17) / 2.
Таким образом, корни уравнения x^2 + 3x - 2 = 0 равны:
x1 = (-3 + √17) / 2, x2 = (-3 - √17) / 2.
c) Для решения уравнения x^2 - 2x + 1 = 0, мы также можем использовать метод квадратного уравнения или метод нахождения корней.
В данном случае, a = 1, b = -2 и c = 1.
x = (2 ± √((-2)^2 - 4*1*1)) / 2*1.
x = (2 ± √(4 - 4)) / 2.
x = (2 ± √0) / 2.
Таким образом, уравнение x^2 - 2x + 1 = 0 имеет только один корень:
x = 1.


Похожие вопросы

Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili