Решите неравенства с помощью графика соответствующей квадратичной функции 1)x^2-3x-4>0
2)-x^2-3x+4<=0 3)x^2+7x+10<0 4)-x^2+3x-2>=0и если можно на листочке написать плиз срочноОтветы на вопрос

Solving Quadratic Inequalities Using Graphs
Let's solve the given quadratic inequalities using the corresponding graphs of the quadratic functions.
1. Solving x^2 - 3x - 4 > 0: - The quadratic function is in the form of \(y = x^2 - 3x - 4\). - To find the solution, we need to determine the x-values for which the function is greater than 0.
2. Solving -x^2 - 3x + 4 <= 0: - The quadratic function is in the form of \(y = -x^2 - 3x + 4\). - We'll find the x-values for which the function is less than or equal to 0.
3. Solving x^2 + 7x + 10 < 0: - The quadratic function is in the form of \(y = x^2 + 7x + 10\). - We'll determine the x-values for which the function is less than 0.
4. Solving -x^2 + 3x - 2 >= 0: - The quadratic function is in the form of \(y = -x^2 + 3x - 2\). - We'll find the x-values for which the function is greater than or equal to 0.
Let's solve each of these inequalities using the corresponding graphs of the quadratic functions.
Graphical Solutions
1. Solving x^2 - 3x - 4 > 0: - The graph of the function \(y = x^2 - 3x - 4\) is a parabola that opens upwards. We need to find the x-values for which the function is greater than 0. - The solutions can be found by identifying the x-values where the graph is above the x-axis.
2. Solving -x^2 - 3x + 4 <= 0: - The graph of the function \(y = -x^2 - 3x + 4\) is a parabola that opens downwards. We'll determine the x-values for which the function is less than or equal to 0. - The solutions can be found by identifying the x-values where the graph is below or touching the x-axis.
3. Solving x^2 + 7x + 10 < 0: - The graph of the function \(y = x^2 + 7x + 10\) is a parabola that opens upwards. We'll determine the x-values for which the function is less than 0. - The solutions can be found by identifying the x-values where the graph is below the x-axis.
4. Solving -x^2 + 3x - 2 >= 0: - The graph of the function \(y = -x^2 + 3x - 2\) is a parabola that opens downwards. We'll find the x-values for which the function is greater than or equal to 0. - The solutions can be found by identifying the x-values where the graph is above or touching the x-axis.
Let's proceed to solve each inequality graphically and provide the corresponding solutions.
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili
