Вопрос задан 30.07.2018 в 02:18. Предмет Алгебра. Спрашивает Романова Екатерина.

Решите неравенства с помощью графика соответствующей квадратичной функции 1)x^2-3x-4>0

2)-x^2-3x+4<=0 3)x^2+7x+10<0 4)-x^2+3x-2>=0и если можно на листочке написать плиз срочно
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Асанов Алмат.
................................

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Solving Quadratic Inequalities Using Graphs

Let's solve the given quadratic inequalities using the corresponding graphs of the quadratic functions.

1. Solving x^2 - 3x - 4 > 0: - The quadratic function is in the form of \(y = x^2 - 3x - 4\). - To find the solution, we need to determine the x-values for which the function is greater than 0.

2. Solving -x^2 - 3x + 4 <= 0: - The quadratic function is in the form of \(y = -x^2 - 3x + 4\). - We'll find the x-values for which the function is less than or equal to 0.

3. Solving x^2 + 7x + 10 < 0: - The quadratic function is in the form of \(y = x^2 + 7x + 10\). - We'll determine the x-values for which the function is less than 0.

4. Solving -x^2 + 3x - 2 >= 0: - The quadratic function is in the form of \(y = -x^2 + 3x - 2\). - We'll find the x-values for which the function is greater than or equal to 0.

Let's solve each of these inequalities using the corresponding graphs of the quadratic functions.

Graphical Solutions

1. Solving x^2 - 3x - 4 > 0: - The graph of the function \(y = x^2 - 3x - 4\) is a parabola that opens upwards. We need to find the x-values for which the function is greater than 0. - The solutions can be found by identifying the x-values where the graph is above the x-axis.

2. Solving -x^2 - 3x + 4 <= 0: - The graph of the function \(y = -x^2 - 3x + 4\) is a parabola that opens downwards. We'll determine the x-values for which the function is less than or equal to 0. - The solutions can be found by identifying the x-values where the graph is below or touching the x-axis.

3. Solving x^2 + 7x + 10 < 0: - The graph of the function \(y = x^2 + 7x + 10\) is a parabola that opens upwards. We'll determine the x-values for which the function is less than 0. - The solutions can be found by identifying the x-values where the graph is below the x-axis.

4. Solving -x^2 + 3x - 2 >= 0: - The graph of the function \(y = -x^2 + 3x - 2\) is a parabola that opens downwards. We'll find the x-values for which the function is greater than or equal to 0. - The solutions can be found by identifying the x-values where the graph is above or touching the x-axis.

Let's proceed to solve each inequality graphically and provide the corresponding solutions.

0 0

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос