Вопрос задан 29.07.2018 в 14:55. Предмет Алгебра. Спрашивает Хусаинов Рузаль.

Помогите пожалуйста)Упростите рациональное выражение. Подробно.1) 5x^3(2/x^2+1/y+4/x)

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Мажухина Кристина.
Не знаю, правильно ли поняла выражение, вот решение:
в скобках - общий знаменатель y*x^2
(5x^3)*(2y + x^2 + 4xy)/(y*x^2) = (5x^3 + 20y*x^2 + 10xy)/y

0 0
Отвечает Юнусов Алмаз.
5x³*2/x²+1/y+4/x=5x³(2y+x²+4xy)/x²y=5x(2y+x²+4xy)/y=(10xy+5x³+20x²y)/y
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Я могу помочь вам упростить рациональное выражение. Для этого вам нужно выполнить несколько шагов:

1) Раскройте скобки в числителе, перемножив 5x^3 с каждым слагаемым внутри скобок: $$5x^3(2/x^2+1/y+4/x) = 10x + 5x^3/y + 20x^2$$ 2) Найдите наибольший общий делитель (НОД) всех членов в числителе. В данном случае НОД равен 5x: $$10x + 5x^3/y + 20x^2 = 5x(2 + x^2/y + 4x)$$ 3) Вынесите НОД за скобку и сократите его с числителем: $$5x^3(2/x^2+1/y+4/x) / 5x = (2 + x^2/y + 4x) / x$$ 4) Упростите дробь, разделив каждое слагаемое в числителе на x: $$(2 + x^2/y + 4x) / x = 2/x + x/y + 4$$

Это окончательный ответ. Вы можете проверить его, подставив вместо x и y любые числа и сравнив результаты до и после упрощения. Если вы хотите узнать больше о том, как упростить рациональные выражения, вы можете посмотреть [эту статью](https://ru.wikihow.com/%D1%83%D0%BF%D1%80%D0%BE%D1%89%D0%B0%D1%82%D1%8C-%D1%80%D0%B0%D1%86%D0%B8%D0%BE%D0%BD%D0%B0%D0%BB%D1%8C%D0%BD%D1%8B%D0%B5-%D0%B2%D1%8B%D1%80%D0%B0%D0%B6%D0%B5%D0%BD%D0%B8%D1%8F) или [эту статью](https://ru.wikihow.com/%D1%80%D0%B5%D1%88%D0%B8%D1%82%D1%8C-%D1%80%D0%B0%D1%86%D0%B8%D0%BE%D0%BD%D0%B0%D0%BB%D1%8C%D0%BD%D0%BE%D0%B5-%D1%83%D1%80%D0%B0%D0%B2%D0%BD%D0%B5%D0%BD%D0%B8%D0%B5). Надеюсь, я вам помог. Спасибо за использование Bing.

0 0

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос