Вопрос задан 11.11.2023 в 03:09. Предмет Алгебра. Спрашивает Ушакова Ксения.

Выполните умножения: а) -10x^2y^2/9a^2•27a^3/5xy; b) 2m^3/35a^3b^2•(-7a^2b/6m); c)

13x/12mn^2•4m^2n; d) -ab•(-11x^2/3a^2b^2)
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Рыбакова Елизавета.

Вложение фото. Ваша задача.


0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

a) To multiply the expression -(10x^2y^2)/(9a^2) by (27a^3)/(5xy), we can simplify and multiply the numerators and denominators separately.

First, let's simplify the expression -(10x^2y^2)/(9a^2):

-(10x^2y^2)/(9a^2) = -((10/9)(x^2y^2)/(a^2))

Next, let's simplify the expression (27a^3)/(5xy):

(27a^3)/(5xy) = (27/5)(a^3)/(xy)

Now we can multiply the numerators and denominators:

-((10/9)(x^2y^2)/(a^2)) * ((27/5)(a^3)/(xy))

Multiplying the numerators gives us:

-((10/9)(27/5)(x^2y^2)(a^3))

Multiplying the denominators gives us:

(a^2)(xy)

Combining everything together, we get the final expression:

-((10/9)(27/5)(x^2y^2)(a^3))/(a^2)(xy)

Simplifying further, we can cancel out common factors:

-((10/9)(27/5)(x^2y^2)(a^3))/(a^2)(xy) = -((2/3)(3/1)(x^2y^2)(a^3))/(1)(1)

= -2(x^2y^2)(a^3)/3

b) To multiply the expression (2m^3)/(35a^3b^2) by (-7a^2b)/(6m), we can simplify and multiply the numerators and denominators separately.

First, let's simplify the expression (2m^3)/(35a^3b^2):

(2m^3)/(35a^3b^2) = (2/35)(m^3)/(a^3b^2)

Next, let's simplify the expression (-7a^2b)/(6m):

(-7a^2b)/(6m) = (-7/6)(a^2b)/(m)

Now we can multiply the numerators and denominators:

((2/35)(m^3)/(a^3b^2)) * ((-7/6)(a^2b)/(m))

Multiplying the numerators gives us:

((2/35)(-7/6)(m^3)(a^2b))

Multiplying the denominators gives us:

(a^3b^2)(m)

Combining everything together, we get the final expression:

((2/35)(-7/6)(m^3)(a^2b))/(a^3b^2)(m)

Simplifying further, we can cancel out common factors:

((2/35)(-7/6)(m^3)(a^2b))/(a^3b^2)(m) = ((-2/5)(1/1)(m^3)(a^2b))/(1)(1)

= (-2/5)(m^3)(a^2b)

c) To multiply the expression (13x)/(12mn^2) by (4m^2n), we can simplify and multiply the numerators and denominators separately.

First, let's simplify the expression (13x)/(12mn^2):

(13x)/(12mn^2) = (13/12)(x)/(mn^2)

Next, let's simplify the expression (4m^2n):

(4m^2n) = (4/1)(m^2n)

Now we can multiply the numerators and denominators:

((13/12)(x)/(mn^2)) * ((4/1)(m^2n))

Multiplying the numerators gives us:

((13/12)(4/1)(x)(m^2n))

Multiplying the denominators gives us:

(mn^2)

Combining everything together, we get the final expression:

((13/12)(4/1)(x)(m^2n))/(mn^2)

Simplifying further, we can cancel out common factors:

((13/12)(4/1)(x)(m^2n))/(mn^2) = ((13/3)(x)(m^2n))/(1)(1)

= (13/3)(x)(m^2n)

d) To multiply the expression -(ab) by (-11x^2)/(3a^2b^2), we can simply multiply the numerators and denominators:

(-(ab)) * ((-11x^2)/(3a^2b^2))

Multiplying the numerators gives us:

((-11ab)(x^2))

Multiplying the denominators gives us:

(3a^2b^2)

Combining everything together, we get the final expression:

((-11ab)(x^2))/(3a^2b^2)

Simplifying further, we can cancel out common factors:

((-11ab)(x^2))/(3a^2b^2) = (-11x^2)/(3a)

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос