
Выполните умножения: а) -10x^2y^2/9a^2•27a^3/5xy; b) 2m^3/35a^3b^2•(-7a^2b/6m); c)
13x/12mn^2•4m^2n; d) -ab•(-11x^2/3a^2b^2)

Ответы на вопрос

Вложение фото. Ваша задача.




a) To multiply the expression -(10x^2y^2)/(9a^2) by (27a^3)/(5xy), we can simplify and multiply the numerators and denominators separately.
First, let's simplify the expression -(10x^2y^2)/(9a^2):
-(10x^2y^2)/(9a^2) = -((10/9)(x^2y^2)/(a^2))
Next, let's simplify the expression (27a^3)/(5xy):
(27a^3)/(5xy) = (27/5)(a^3)/(xy)
Now we can multiply the numerators and denominators:
-((10/9)(x^2y^2)/(a^2)) * ((27/5)(a^3)/(xy))
Multiplying the numerators gives us:
-((10/9)(27/5)(x^2y^2)(a^3))
Multiplying the denominators gives us:
(a^2)(xy)
Combining everything together, we get the final expression:
-((10/9)(27/5)(x^2y^2)(a^3))/(a^2)(xy)
Simplifying further, we can cancel out common factors:
-((10/9)(27/5)(x^2y^2)(a^3))/(a^2)(xy) = -((2/3)(3/1)(x^2y^2)(a^3))/(1)(1)
= -2(x^2y^2)(a^3)/3
b) To multiply the expression (2m^3)/(35a^3b^2) by (-7a^2b)/(6m), we can simplify and multiply the numerators and denominators separately.
First, let's simplify the expression (2m^3)/(35a^3b^2):
(2m^3)/(35a^3b^2) = (2/35)(m^3)/(a^3b^2)
Next, let's simplify the expression (-7a^2b)/(6m):
(-7a^2b)/(6m) = (-7/6)(a^2b)/(m)
Now we can multiply the numerators and denominators:
((2/35)(m^3)/(a^3b^2)) * ((-7/6)(a^2b)/(m))
Multiplying the numerators gives us:
((2/35)(-7/6)(m^3)(a^2b))
Multiplying the denominators gives us:
(a^3b^2)(m)
Combining everything together, we get the final expression:
((2/35)(-7/6)(m^3)(a^2b))/(a^3b^2)(m)
Simplifying further, we can cancel out common factors:
((2/35)(-7/6)(m^3)(a^2b))/(a^3b^2)(m) = ((-2/5)(1/1)(m^3)(a^2b))/(1)(1)
= (-2/5)(m^3)(a^2b)
c) To multiply the expression (13x)/(12mn^2) by (4m^2n), we can simplify and multiply the numerators and denominators separately.
First, let's simplify the expression (13x)/(12mn^2):
(13x)/(12mn^2) = (13/12)(x)/(mn^2)
Next, let's simplify the expression (4m^2n):
(4m^2n) = (4/1)(m^2n)
Now we can multiply the numerators and denominators:
((13/12)(x)/(mn^2)) * ((4/1)(m^2n))
Multiplying the numerators gives us:
((13/12)(4/1)(x)(m^2n))
Multiplying the denominators gives us:
(mn^2)
Combining everything together, we get the final expression:
((13/12)(4/1)(x)(m^2n))/(mn^2)
Simplifying further, we can cancel out common factors:
((13/12)(4/1)(x)(m^2n))/(mn^2) = ((13/3)(x)(m^2n))/(1)(1)
= (13/3)(x)(m^2n)
d) To multiply the expression -(ab) by (-11x^2)/(3a^2b^2), we can simply multiply the numerators and denominators:
(-(ab)) * ((-11x^2)/(3a^2b^2))
Multiplying the numerators gives us:
((-11ab)(x^2))
Multiplying the denominators gives us:
(3a^2b^2)
Combining everything together, we get the final expression:
((-11ab)(x^2))/(3a^2b^2)
Simplifying further, we can cancel out common factors:
((-11ab)(x^2))/(3a^2b^2) = (-11x^2)/(3a)


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili