
Найти производную: 1) f(x)=tg(x+pi/4) 2) f(x)=sin2x+tgx 3) f(x)=4-1/4tgx 4) f(x)=x^2ctgx


Ответы на вопрос

Ответ:
1.
2.
3.
4.



1) f(x) = tg(x+pi/4)
To find the derivative of f(x) = tg(x+pi/4), we can use the chain rule. The chain rule states that if we have a composite function, f(g(x)), then the derivative is given by f'(g(x)) * g'(x).
Let's break down the function:
f(x) = tg(x+pi/4)
Here, g(x) = x + pi/4, and f(x) = tg(g(x)).
Now, we can find the derivative step by step:
Step 1: Find the derivative of the inner function g(x). g'(x) = 1
Step 2: Find the derivative of f(g(x)). f'(u) = sec^2(u), where u = g(x)
Step 3: Substitute u with g(x). f'(g(x)) = sec^2(g(x))
Step 4: Multiply f'(g(x)) by g'(x) using the chain rule. f'(x) = sec^2(g(x)) * g'(x)
Substitute the values we found for g(x) and g'(x): f'(x) = sec^2(x + pi/4) * 1
Therefore, the derivative of f(x) = tg(x+pi/4) is f'(x) = sec^2(x + pi/4).
2) f(x) = sin(2x) + tg(x)
To find the derivative of f(x) = sin(2x) + tg(x), we can use the sum rule and the derivative of sin(x) and tg(x).
Step 1: Find the derivative of sin(2x). The derivative of sin(2x) is 2cos(2x).
Step 2: Find the derivative of tg(x). The derivative of tg(x) is sec^2(x).
Step 3: Combine the derivatives using the sum rule. f'(x) = 2cos(2x) + sec^2(x)
Therefore, the derivative of f(x) = sin(2x) + tg(x) is f'(x) = 2cos(2x) + sec^2(x).
3) f(x) = 4 - 1/4tg(x)
To find the derivative of f(x) = 4 - (1/4)tg(x), we can use the constant rule and the derivative of tg(x).
Step 1: Find the derivative of tg(x). The derivative of tg(x) is sec^2(x).
Step 2: Apply the constant rule. The derivative of a constant times a function is equal to the constant times the derivative of the function.
f'(x) = 0 - (1/4) * sec^2(x)
Therefore, the derivative of f(x) = 4 - (1/4)tg(x) is f'(x) = -(1/4)sec^2(x).
4) f(x) = x^2ctgx
To find the derivative of f(x) = x^2ctgx, we can use the product rule and the derivative of ctg(x) (which is -csc^2(x)).
Step 1: Find the derivative of x^2. The derivative of x^2 is 2x.
Step 2: Find the derivative of ctg(x). The derivative of ctg(x) is -csc^2(x).
Step 3: Apply the product rule. The product rule states that if we have two functions u(x) and v(x), then the derivative of their product is given by u'(x)v(x) + u(x)v'(x).
f'(x) = (2x * ctgx) + (x^2 * -csc^2(x))
Simplifying further: f'(x) = 2xctgx - x^2csc^2(x)
Therefore, the derivative of f(x) = x^2ctgx is f'(x) = 2xctgx - x^2csc^2(x).
I hope this helps! Let me know if you have any further questions.


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili