Вопрос задан 04.11.2023 в 07:39. Предмет Алгебра. Спрашивает Shakuova Arujan.

Найти производную: 1) f(x)=tg(x+pi/4) 2) f(x)=sin2x+tgx 3) f(x)=4-1/4tgx 4) f(x)=x^2ctgx

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Рудометов Владик.

Ответ:

1.

f'(x) =  \frac{1}{ { \cos }^{2} (x +  \frac{\pi}{4}) }  \\

2.

f'(x) = 2 \cos(2x)  +  \frac{1}{ { \cos}^{2} x}  \\

3.

f'(x) =  (4 -  \frac{1}{4tgx} ) '=  -  \frac{1}{4}  \times ( -  {tg}^{ - 2} x) \times  \frac{1}{ { \cos }^{2}x }  =  \\  =  \frac{1}{4}   \times  \frac{ { \cos }^{2}x }{ { \sin }^{2}x }  \times  \frac{1}{ { \cos }^{2} x}  =  \frac{1}{4 { \sin }^{2} x}

4.

f'(x) = ( {x}^{2} )'ctgx + (ctgx) '\times  {x}^{2}  =  \\  = 2xctgx -  \frac{ {x}^{2} }{ { \sin }^{2} x}

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

1) f(x) = tg(x+pi/4)

To find the derivative of f(x) = tg(x+pi/4), we can use the chain rule. The chain rule states that if we have a composite function, f(g(x)), then the derivative is given by f'(g(x)) * g'(x).

Let's break down the function:

f(x) = tg(x+pi/4)

Here, g(x) = x + pi/4, and f(x) = tg(g(x)).

Now, we can find the derivative step by step:

Step 1: Find the derivative of the inner function g(x). g'(x) = 1

Step 2: Find the derivative of f(g(x)). f'(u) = sec^2(u), where u = g(x)

Step 3: Substitute u with g(x). f'(g(x)) = sec^2(g(x))

Step 4: Multiply f'(g(x)) by g'(x) using the chain rule. f'(x) = sec^2(g(x)) * g'(x)

Substitute the values we found for g(x) and g'(x): f'(x) = sec^2(x + pi/4) * 1

Therefore, the derivative of f(x) = tg(x+pi/4) is f'(x) = sec^2(x + pi/4).

2) f(x) = sin(2x) + tg(x)

To find the derivative of f(x) = sin(2x) + tg(x), we can use the sum rule and the derivative of sin(x) and tg(x).

Step 1: Find the derivative of sin(2x). The derivative of sin(2x) is 2cos(2x).

Step 2: Find the derivative of tg(x). The derivative of tg(x) is sec^2(x).

Step 3: Combine the derivatives using the sum rule. f'(x) = 2cos(2x) + sec^2(x)

Therefore, the derivative of f(x) = sin(2x) + tg(x) is f'(x) = 2cos(2x) + sec^2(x).

3) f(x) = 4 - 1/4tg(x)

To find the derivative of f(x) = 4 - (1/4)tg(x), we can use the constant rule and the derivative of tg(x).

Step 1: Find the derivative of tg(x). The derivative of tg(x) is sec^2(x).

Step 2: Apply the constant rule. The derivative of a constant times a function is equal to the constant times the derivative of the function.

f'(x) = 0 - (1/4) * sec^2(x)

Therefore, the derivative of f(x) = 4 - (1/4)tg(x) is f'(x) = -(1/4)sec^2(x).

4) f(x) = x^2ctgx

To find the derivative of f(x) = x^2ctgx, we can use the product rule and the derivative of ctg(x) (which is -csc^2(x)).

Step 1: Find the derivative of x^2. The derivative of x^2 is 2x.

Step 2: Find the derivative of ctg(x). The derivative of ctg(x) is -csc^2(x).

Step 3: Apply the product rule. The product rule states that if we have two functions u(x) and v(x), then the derivative of their product is given by u'(x)v(x) + u(x)v'(x).

f'(x) = (2x * ctgx) + (x^2 * -csc^2(x))

Simplifying further: f'(x) = 2xctgx - x^2csc^2(x)

Therefore, the derivative of f(x) = x^2ctgx is f'(x) = 2xctgx - x^2csc^2(x).

I hope this helps! Let me know if you have any further questions.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос