
Вопрос задан 30.10.2023 в 00:12.
Предмет Алгебра.
Спрашивает Данилович Ульяна.
2)(2+x)(x-3)-3=(x+1)^24)(y-1)^2-(y+1)(y-7)=0


Ответы на вопрос

Отвечает Павельев Ваня.
Ответы на рисунке........





Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.
To solve the equation (2+x)(x-3)-3=(x+1)^2, we will follow these steps:
Step 1: Expand the equation
Step 2: Simplify and gather like terms
Step 3: Solve for x
Let's go through each step in detail:
#### Step 1: Expand the equation
To expand the equation, we need to multiply the terms using the distributive property. Let's expand both sides of the equation:
On the left-hand side, we have:
(2+x)(x-3) - 3
Using the distributive property, we multiply each term inside the parentheses with the terms outside the parentheses:
2(x) + 2(-3) + x(x) + x(-3) - 3
Simplifying this expression gives us:
2x - 6 + x^2 - 3x - 3
On the right-hand side, we have:
(x+1)^2
Expanding this expression using the formula for squaring a binomial, we get:
(x+1)(x+1) = x^2 + x + x + 1 = x^2 + 2x + 1
So the expanded equation becomes:
2x - 6 + x^2 - 3x - 3 = x^2 + 2x + 1
#### Step 2: Simplify and gather like terms
Now, let's simplify and gather like terms on both sides of the equation:
On the left-hand side, we have:
2x - 6 + x^2 - 3x - 3
Combining like terms gives us:
x^2 - x - 9
On the right-hand side, we have:
x^2 + 2x + 1
Since the equation is set to zero, we can rewrite it as:
x^2 - x - 9 = 0
#### Step 3: Solve for x
To solve the quadratic equation x^2 - x - 9 = 0, we can use factoring, completing the square, or the quadratic formula. In this case, factoring is not straightforward, so let's use the quadratic formula:
The quadratic formula states that for an equation of the form ax^2 + bx + c = 0, the solutions for x are given by:
x = (-b ± √(b^2 - 4ac)) / (2a)
Comparing this with our equation x^2 - x - 9 = 0, we have:
a = 1, b = -1, c = -9
Plugging these values into the quadratic formula, we get:
x = (-(-1) ± √((-1)^2 - 4(1)(-9))) / (2(1))
x = (1 ± √(1 + 36)) / 2
x = (1 ± √37) / 2
So the solutions for x are:
x = (1 + √37) / 2
x = (1 - √37) / 2
#### Solving the equation (y-1)^2 - (y+1)(y-7) = 0
To solve the equation (y-1)^2 - (y+1)(y-7) = 0, we will follow similar steps:
Step 1: Expand the equation
Step 2: Simplify and gather like terms
Step 3: Solve for y
Let's go through each step in detail:
#### Step 1: Expand the equation
To expand the equation, we need to multiply the terms using the distributive property. Let's expand both sides of the equation:
On the left-hand side, we have:
(y-1)^2 - (y+1)(y-7)
Expanding the square (y-1)^2 gives us:
(y-1)(y-1) = y^2 - y - y + 1 = y^2 - 2y + 1
Expanding the second term (y+1)(y-7) using the distributive property gives us:
y(y) - y(7) + 1(y) - 1(7) = y^2 - 7y + y - 7 = y^2 - 6y - 7
So the expanded equation becomes:
y^2 - 2y + 1 - (y^2 - 6y - 7) = 0
#### Step 2: Simplify and gather like terms
Now, let's simplify and gather like terms on both sides of the equation:
On the left-hand side, we have:
y^2 - 2y + 1 - (y^2 - 6y - 7)
Removing the parentheses gives us:
y^2 - 2y + 1 - y^2 + 6y + 7
Combining like terms gives us:
4y + 8
On the right-hand side, we have:
0
So the equation simplifies to:
4y + 8 = 0
#### Step 3: Solve for y
To solve the linear equation 4y + 8 = 0, we can isolate the variable y by subtracting 8 from both sides:
4y = -8
Dividing both sides by 4 gives us:
y = -8/4
y = -2
So the solution for y is:
y = -2
In summary, the solutions for the given equations are:
For the equation (2+x)(x-3)-3=(x+1)^2:
x = (1 + √37) / 2
x = (1 - √37) / 2
For the equation (y-1)^2 - (y+1)(y-7) = 0:
y = -2
0
0


Похожие вопросы

Алгебра 232
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili