
Помогите, пожалуйста, решить неравенства, с объяснениями:1.|x^2+1|>22. |x^2-3|<6


Ответы на вопрос

1.|x^2+1| > 2
|x^2+1| > 2
x^2 > 1
значит x є ( -бесконечности; -1) U (1 ; +бесконечности)
2. |x^2-3| < 6
значит x є ( -3; 3)



извиняюсь за качество ._.
надеюсь, всё понятно^^




Давайте рассмотрим каждое неравенство по отдельности и найдем их решения.
1. |x^2 + 1| > 2
Для начала, давайте разберемся с абсолютным значением. Если у нас есть выражение вида |a| > b, то это означает, что абсолютное значение a больше b или меньше -b. То есть:
- Если a > b, то |a| > b. - Если a < -b, то |a| > b.
Теперь применим это к нашему неравенству.
Случай 1: x^2 + 1 > 2
Вычитаем 1 с обеих сторон:
x^2 > 1
Для нахождения решений этого неравенства, мы можем разбить его на два случая: когда x > 0 и когда x < 0.
Случай 1.1: x > 0
Если x > 0, то x^2 > 1 будет выполняться только при x > 1 или x < -1.
Случай 1.2: x < 0
Если x < 0, то x^2 > 1 будет выполняться только при x < -1.
Случай 2: x^2 + 1 < -2
Добавляем 1 с обеих сторон:
x^2 < -1
Однако это неравенство не имеет решений в действительных числах, так как квадрат любого вещественного числа всегда неотрицателен.
Таким образом, решениями неравенства |x^2 + 1| > 2 являются все числа x, такие что x > 1 или x < -1.
2. |x^2 - 3| < 6
Снова применим абсолютное значение.
Случай 1: x^2 - 3 > -6
Добавляем 3 с обеих сторон:
x^2 > -3
Это неравенство выполняется для всех вещественных чисел x, так как квадрат любого числа всегда неотрицателен.
Случай 2: x^2 - 3 < 6
Добавляем 3 с обеих сторон:
x^2 < 9
Для нахождения решений этого неравенства, мы можем разбить его на два случая: когда x > 0 и когда x < 0.
Случай 2.1: x > 0
Если x > 0, то x^2 < 9 будет выполняться только при -3 < x < 3.
Случай 2.2: x < 0
Если x < 0, то x^2 < 9 будет выполняться всегда.
Таким образом, решениями неравенства |x^2 - 3| < 6 являются все числа x, такие что -3 < x < 3.
Надеюсь, это поможет вам понять решение данных неравенств. Если у вас возникнут дополнительные вопросы, не стесняйтесь задавать их!


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili