Вопрос задан 26.07.2018 в 05:18. Предмет Алгебра. Спрашивает Листратенко Ксения.

Разложить многочлен в виде произведения x в квадрате-xy-5x+5y

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Романова Катя.
X²-xy-5x+5y =
= (х²-xy)-(5x-5y) =
= х(х-y)-5(x-y) =
= (х-у)·(х-5)

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для разложения данного многочлена в виде произведения, мы можем использовать метод факторизации или метод группировки.

Метод факторизации: Для начала, посмотрим на выражение: x^2 - xy - 5x + 5y. Мы можем заметить, что первые два члена x^2 и -xy имеют общий множитель x, а последние два члена -5x и 5y имеют общий множитель -5.

Разложим многочлен соответственно: x(x - y) - 5(x - y). Здесь, у нас есть общий множитель (x - y).

Теперь, мы можем записать разложение в виде произведения: (x - 5)(x - y).

Метод группировки: Другой способ разложения данного многочлена в виде произведения - это метод группировки. Давайте рассмотрим выражение снова: x^2 - xy - 5x + 5y.

Мы можем сгруппировать члены парами: (x^2 - xy) + (-5x + 5y).

Теперь, мы можем факторизовать общий множитель каждой группы: x(x - y) - 5(x - y).

Заметим, что у нас опять есть общий множитель (x - y).

Теперь мы можем записать разложение в виде произведения: (x - 5)(x - y).

Оба метода приводят к одному и тому же результату: (x - 5)(x - y).

Ответ: Разложение многочлена x^2 - xy - 5x + 5y в виде произведения будет: (x - 5)(x - y).

0 0

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос