
Найти точку минимума функции y=x√x-24x+1


Ответы на вопрос

Ответ:
(256; -2047)
Объяснение:
y = x√x - 24x + 1 = x^(3/2) - 24x + 1
Точка минимума (или максимума) - это точка, в которой производная функции равна 0.
y' = 3/2*x^(1/2) - 24 = 3√x/2 - 24 = 0
3√x/2 = 24
√x = 24*2/3 = 16
x = 256
y(256) = 256*√256 - 24*256 + 1 = 256*16 - 256*24 + 1 = -2047
Посчитано в уме!



Для поиска точки минимума функции y = x√x - 24x + 1, нам нужно найти производную функции и найти её нули. Точка, в которой производная равна нулю, может быть потенциальной точкой минимума. Затем мы проверим, является ли это действительно точкой минимума, используя вторую производную.
- Найдем производную функции y по x: y'(x) = d/dx (x√x - 24x + 1)
Для этого используем правила дифференцирования:
y'(x) = (1/2)√x + x * (1/2) * x^(-1/2) - 24
Теперь приравняем производную к нулю и решим уравнение:
(1/2)√x + x * (1/2) * x^(-1/2) - 24 = 0
Умножим обе стороны на 2, чтобы избавиться от дробей:
√x + x * x^(-1/2) - 48 = 0
Теперь упростим уравнение:
√x + x^(1/2 - 1) - 48 = 0 √x + x^(-1/2) - 48 = 0
Возводим обе стороны в квадрат, чтобы избавиться от корня:
x + 1 - 48x = 0
Теперь решим уравнение относительно x:
-47x + 1 = 0 -47x = -1 x = 1/47
Теперь у нас есть значение x, при котором производная равна нулю. Чтобы определить, является ли это точкой минимума, нам нужно проанализировать вторую производную.
Найдем вторую производную:
y''(x) = d^2/dx^2 (x√x - 24x + 1)
Используя правила дифференцирования, найдем вторую производную:
y''(x) = (1/2) * x^(-1/2) + x * (-1/4) * x^(-3/2)
y''(1/47) = (1/2) * (1/√(47)) - (1/4) * (1/47^3)
Подставим x = 1/47 в уравнение:
y''(1/47) = (1/2) * (1/√(47)) - (1/4) * (1/47^3)
Этот результат должен быть положительным, чтобы указывать на точку минимума. Если это так, то точка x = 1/47 - это точка минимума функции y = x√x - 24x + 1.


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili