
Знайдіть перший і шостий члени арифметичної прогресії, якщо її різниця дорівнює 0,6, а сума
десяти її перших членів дорівнює 39.

Ответы на вопрос





Давайте спершу знайдемо різницю арифметичної прогресії (d), використовуючи дані про суму перших десяти членів прогресії. Формула для знаходження суми перших n членів арифметичної прогресії виглядає так:
S_n = (n/2) * [2a + (n-1)d],
де S_n - сума перших n членів, a - перший член прогресії, d - різниця між членами прогресії, n - кількість членів.
Ми знаємо, що сума перших 10 членів дорівнює 39, тобто S_10 = 39. Перший член прогресії (a) і різниця (d) поки що невідомі.
39 = (10/2) * [2a + (10-1)d] 39 = 5 * [2a + 9d]
Тепер ми можемо розв'язати це рівняння відносно a та d.
5 * [2a + 9d] = 39 2a + 9d = 39 / 5 2a + 9d = 7.8
Тепер ми можемо знайти перший член прогресії a:
2a = 7.8 - 9d a = (7.8 - 9d) / 2
Тепер, коли ми знайшли значення a, ми можемо знайти перший і шостий члени арифметичної прогресії:
Перший член (a): a = (7.8 - 9d) / 2
Шостий член (a + 5d): a_6 = a + 5d a_6 = [(7.8 - 9d) / 2] + 5d
Тепер ми маємо вирази для обчислення першого і шостого членів прогресії у вигляді виразів з різницею d. Щоб знайти числові значення a, a_6 і d, потрібно більше інформації або інше рівняння, що описує прогресію.


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili