
2y^2-3y+2p=0 -y^2+2y-5p=0 x^2-2px+6=0 x^2-8px-4,6=0


Ответы на вопрос

Ответ:
1.2y^2-3y+2p=0
2p=-2y^2+3y
p=-y^2+3/2 y
2.-y^2+2y-5p=0
-5p=y^2-2y
p=-1/5 y^2+2/5 y
3.x^2-2px+6=0
D=(-2p)^2-4*1*6=4p^2-24
система :4p^2-24>0
4p^2-24=0
4p^2-24<0
система: p принадлежит промежутку(от минус бесконечности;до минус корня из 6)знак объединения(от корня из 6;плюс бесконечности)
p1=минус корень из 6
p2=корень из 6
p принадлежит (минус корень из 6;корень из 6).
4.x^2-8px-4,6=0
x^2-8px-23/5=0
D=(-8p)^2-4*1*(-23/5)=64p^2+92/5
2 действительных корня



It appears you have provided four quadratic equations, and it seems like you might want to solve for the variables y and p in terms of x. Let's work through these equations one by one:
- 2y^2 - 3y + 2p = 0
- -y^2 + 2y - 5p = 0
- x^2 - 2px + 6 = 0
- x^2 - 8px - 4,6 = 0
Let's start with the first two equations:
1. 2y^2 - 3y + 2p = 0 2. -y^2 + 2y - 5p = 0
We can solve these two equations simultaneously. To do this, we'll eliminate 'p' from the equations by equating the expressions for 'p' in both equations:
From equation (1), we have p = (3y - 2y^2) / 2.
From equation (2), we have p = (2y - y^2) / 5.
Now we can set these expressions for 'p' equal to each other and solve for 'y':
(3y - 2y^2) / 2 = (2y - y^2) / 5
Now, let's solve this equation for 'y':
Multiply both sides by 10 to eliminate fractions:
5(3y - 2y^2) = 2(2y - y^2)
Expand:
15y - 10y^2 = 4y - 2y^2
Now, bring all terms to one side of the equation:
10y^2 - 15y + 4y - 2y^2 = 0
Combine like terms:
8y^2 - 11y = 0
Now, we can factor out 'y':
y(8y - 11) = 0
So, y = 0 or 8y - 11 = 0.
If y = 0, then p can be calculated using either equation.
If 8y - 11 = 0, then y = 11/8.
Now, we have the values of 'y'. We can use these values to calculate 'p' using one of the equations. Let's use equation (1):
If y = 0, then from equation (1): 2p = 0, so p = 0.
If y = 11/8, then from equation (1): 2p = 11/4 - 33/8 + 22/64, which simplifies to 2p = 11/8 - 33/8 + 11/32.
Now, solve for 'p':
2p = (11 - 33 + 11/4) / 8
2p = (-21 + 11/4) / 8
2p = (-84 + 11) / (8 * 4)
2p = (-73) / 32
p = (-73/32) / 2
p = -73/64
So, the solutions are:
- When y = 0, p = 0.
- When y = 11/8, p = -73/64.
Now, let's move on to the next two equations:
3. x^2 - 2px + 6 = 0 4. x^2 - 8px - 4,6 = 0
It appears that there is a typo in the fourth equation, as "4,6" doesn't seem like a valid number. If you can provide the correct equation, I can help you solve it.


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili