
Log2(2x^2+4)-log2(x^2-x+10)>=log2(2-1/x)


Ответы на вопрос

решение:
____-___ 0 ____+_____2/3_____-___5____+___
(0;2/3][5;+oo)
с учетом ОДЗ
ОТВЕТ (1/2; 2/3][5;+oo)



To solve the inequality log₂(2x² + 4) - log₂(x² - x + 10) ≥ log₂(2 - 1/x), we can use properties of logarithms to simplify and solve it.
First, remember that you can combine logarithms with subtraction inside a single logarithm using the division property of logarithms:
log₂(a) - log₂(b) = log₂(a/b)
So, the original inequality becomes:
log₂((2x² + 4) / (x² - x + 10)) ≥ log₂(2 - 1/x)
Now, we have an inequality of logarithms with the same base (log base 2), which means the arguments inside the logarithms must be equal:
(2x² + 4) / (x² - x + 10) ≥ (2 - 1/x)
Now, we need to solve this inequality. To make the calculations more manageable, let's get rid of the logarithms and work with the inequalities directly:
(2x² + 4) / (x² - x + 10) ≥ (2 - 1/x)
Now, we'll get rid of the fraction by multiplying both sides of the inequality by the least common denominator, which is x(x² - x + 10) to clear the fractions:
x(x² - x + 10) * [(2x² + 4) / (x² - x + 10)] ≥ x(x² - x + 10) * [(2 - 1/x)]
This simplifies to:
2x(x² + 2) ≥ x(x² - x + 10)(2 - 1/x)
Now, distribute on both sides:
2x³ + 4x ≥ 2x(x² - x + 10) - (x³ - x² + 10x)
Simplify further:
2x³ + 4x ≥ 2x³ - 2x² + 20x - x³ + x² - 10x
Now, combine like terms:
2x³ + 4x ≥ 2x³ - x³ - 2x² + x² + 20x - 10x
Simplify:
2x³ + 4x ≥ x³ - x² + 10x
Now, subtract x³ from both sides to isolate the x² term:
2x³ - x³ + 4x - x³ ≥ -x² + 10x
This simplifies to:
x³ + 4x - x³ ≥ -x² + 10x
The x³ terms cancel out:
4x ≥ -x² + 10x
Now, subtract 10x from both sides:
4x - 10x ≥ -x²
Simplify:
-6x ≥ -x²
Now, divide both sides by -1, and remember to reverse the inequality since you're dividing by a negative number:
6x ≤ x²
Now, subtract 6x from both sides:
0 ≤ x² - 6x
Factor the right side:
0 ≤ x(x - 6)
Now, you have two factors to consider:
- x ≥ 0
- x - 6 ≤ 0, which implies x ≤ 6
So, the solution to the original inequality is:
0 ≤ x ≤ 6
This is the range of values for x that satisfies the inequality log₂(2x² + 4) - log₂(x² - x + 10) ≥ log₂(2 - 1/x).


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili