(1+2sinx)sinx=sin2x+cosx
Ответы на вопрос
n и k принадлежат Z
Обе части разделим на cosx =/ 0
m принадлежит Z
ОТВЕТ: - п/6 + 2пn ; - 5п/6 + 2пk ; п/4 + пm , n , k и m принадлежат Z
task/30079176 ( 1 + 2sinx)sinx = sin2x+cosx .
решение (1+2sinx)sinx=sin2x+cosx ⇔ (1+2sinx)sinx=2sinxcosx +cosx ⇔(1+2sinx)sinx =(2sinx + 1 )cosx ⇔ (1+2sinx)sinx -(2sinx + 1 )cosx = 0 ⇔ (2sinx+1)(sinx - cosx) =0⇔ [2sinx +1 =0 ; sinx - cosx =0. ⇔
[ sinx = -1/2 ; sinx =cosx. ⇔ [ sinx = -1/2 ; tgx =1 . ⇔
[ x = (-1)ⁿ⁻¹(π/6) +πn , x =π/4 +πn , n∈ℤ .
To solve the trigonometric equation (1 + 2sin(x))sin(x) = sin(2x) + cos(x), you can follow these steps:
Expand the trigonometric expressions on both sides of the equation using trigonometric identities:
(1 + 2sin(x))sin(x) = sin(x) + 2sin^2(x) = sin(x) + 2(1 - cos^2(x)) = sin(x) + 2 - 2cos^2(x)
sin(2x) = 2sin(x)cos(x)
cos(x) is already in its standard form.
Substitute the expanded expressions back into the original equation:
sin(x) + 2 - 2cos^2(x) = 2sin(x)cos(x) + cos(x)
Move all terms to one side of the equation to set it equal to zero:
sin(x) - 2sin(x)cos(x) - 2cos^2(x) + cos(x) + 2 = 0
Group like terms:
sin(x) - 2sin(x)cos(x) + cos(x) - 2cos^2(x) + 2 = 0
Factor out common terms:
sin(x)(1 - 2cos(x)) + cos(x)(1 - 2cos(x)) + 2 = 0
Notice that (1 - 2cos(x)) is a common factor, so you can factor it out:
(1 - 2cos(x))(sin(x) + cos(x)) + 2 = 0
Now, you have a quadratic equation in the form of (1 - 2cos(x)):
(1 - 2cos(x))(sin(x) + cos(x) + 2) = 0
Set each factor equal to zero:
1 - 2cos(x) = 0 => 2cos(x) = 1 => cos(x) = 1/2 sin(x) + cos(x) + 2 = 0
Solve for cos(x) = 1/2:
Since cos(60°) = 1/2 and cos(300°) = 1/2, we have:
x = 60° + 360°n x = 300° + 360°n
Now, solve the remaining equation for sin(x) + cos(x) + 2 = 0:
sin(x) + cos(x) + 2 = 0
Subtract cos(x) from both sides:
sin(x) + 2 = -cos(x)
Square both sides to get rid of the square root:
sin^2(x) + 4sin(x) + 4 = cos^2(x)
Use the trigonometric identity sin^2(x) + cos^2(x) = 1:
4sin(x) + 4 = 1 - 4sin(x)
Add 4sin(x) to both sides:
8sin(x) + 4 = 1
Subtract 4 from both sides:
8sin(x) = -3
Divide by 8:
sin(x) = -3/8
To find the solutions, use the inverse sine function:
x = arcsin(-3/8)
However, you may want to use a calculator to find the approximate values of x since arcsin(-3/8) is not a standard angle, and it will give you a decimal value.
Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili
