Вопрос задан 07.10.2023 в 14:19. Предмет Алгебра. Спрашивает Кононов Максим.

Для данной функций f(x)=-(x-3)²+12 а)найдите вершину параболы в)найдите симметричный ось параболы

с)найдите точку пересечения с осью ox d)найдите точку пересечения с осью oy е)постройте эскиз графика функций помогите срочно!!!!!!!!
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Перегудова Анна.

Для данной функций f(x)=-(x-3)²+12

а)найдите вершину параболы

f(x)=-(x-3)^2+12\\p=3\\q=12

в)найдите симметричный ось параболы

f(x)=-(x-3)^2+12\\x=p=3

с)найдите точку пересечения с осью ox

-(x-3)^2+12=0\\-(x-3)^2=-12\ /:(-1)\\(x-3)^2=12\\|x-3|=\sqrt{12}\\x-3=2\sqrt2\ \ \ \ \ \ \ \ x-3=-2\sqrt3\\x=2\sqrt2+3\ \ \ \ \ \ \ \ x=-2\sqrt3+3

точки: (-2\sqrt3+3;0)\ \ \ (2\sqrt3+3;0)

-2\sqrt3+3\approx-0,5\ \ \ -2\sqrt3+3\approx6,5

d)найдите точку пересечения с осью oy

-(0-3)^2+12=-(-3)^2+12=-9+12=3

точкa:

(3,0)


0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для данной функции f(x) = -(x - 3)² + 12, выполним все указанные действия:

а) Найдем вершину параболы. Функция дана в канонической форме f(x) = a(x - h)² + k, где (h, k) - координаты вершины параболы. В данном случае, a = -1, h = 3 и k = 12. Таким образом, вершина параболы находится в точке (3, 12).

б) Найдем симметричную ось параболы. Симметричная ось проходит через вершину параболы, поэтому уравнение симметричной оси будет x = 3.

в) Найдем точку пересечения с осью ox. Точка пересечения с осью ox находится, когда f(x) = 0. Подставим 0 вместо f(x) и решим уравнение:

0 = -(x - 3)² + 12

(x - 3)² = 12

x - 3 = ±√12

x = 3 ± 2√3

Таким образом, точки пересечения с осью ox: x₁ = 3 + 2√3 и x₂ = 3 - 2√3.

г) Найдем точку пересечения с осью oy. Точка пересечения с осью oy находится при x = 0. Подставим x = 0 в уравнение f(x):

f(0) = -(0 - 3)² + 12 = -9 + 12 = 3

Точка пересечения с осью oy: (0, 3).

д) Построим эскиз графика функции:

  • Вершина параболы находится в точке (3, 12).
  • Симметричная ось проходит через x = 3.
  • График пересекает ось ox в точках x₁ = 3 + 2√3 и x₂ = 3 - 2√3.
  • График пересекает ось oy в точке (0, 3).

Теперь мы знаем все необходимые данные для построения графика. График будет иметь форму параболы, открывшейся вниз, с вершиной в точке (3, 12), симметричной осью x = 3 и точкой пересечения с осью oy в точке (0, 3). Вы можете нарисовать этот график на бумаге или с использованием графического программного обеспечения.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос