Cos2x + sin²x = 0,5 [-7π/2; -2π]
Ответы на вопрос
To solve the equation cos(2x) + sin^2(x) = 0.5 in the interval [-7π/2, -2π], you can follow these steps:
Rewrite the equation using trigonometric identities: cos(2x) + (1 - cos^2(x)) = 0.5
Substitute u = cos(x): cos(2x) + (1 - u^2) = 0.5
Solve for cos(2x): cos(2x) = 0.5 - (1 - u^2)
Simplify: cos(2x) = u^2 - 0.5
Now, we need to find the values of u in the given interval. In the interval [-7π/2, -2π], u (cos(x)) will vary from -1 to -1/2.
Solve for u^2 - 0.5 in the range [-1, -1/2]: -1 ≤ u^2 - 0.5 ≤ -0.5
We need to find the values of u that satisfy this inequality. Let's start by solving for u^2 - 0.5 ≥ -0.5: u^2 - 0.5 ≥ -0.5 u^2 ≥ 0
Since u^2 is always greater than or equal to zero, any value of u in the range [-1, -1/2] will satisfy this inequality.
So, all values of u in the interval [-1, -1/2] will work.
Now, we need to find the corresponding values of x. Since u = cos(x), we have: -1 ≤ cos(x) ≤ -1/2
To find the values of x, you can take the inverse cosine (arccos) of these values while considering the correct quadrant (quadrant II where cosine is negative):
-1 ≤ cos(x) ≤ -1/2 π ≤ x ≤ 2π/3
However, we need to ensure that these values also fall within the given interval [-7π/2, -2π]. The interval [-7π/2, -2π] is equivalent to [-7π, -4π], so we have:
π ≤ x ≤ 2π/3
The values of x that satisfy the equation cos(2x) + sin^2(x) = 0.5 in the interval [-7π/2, -2π] are: π ≤ x ≤ 2π/3
These are the solutions for the given equation in the specified interval.
Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili
