Вопрос задан 05.10.2023 в 03:32. Предмет Алгебра. Спрашивает Вандич Маша.

-5х^2+6х-1=0 Решите пожалуйста!!!!

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Гриневич Алёна.
Пожалуйста, не забудьте оценить!)

0 0
Отвечает Зайцева Лада.

-5x² + 6x - 1 = 0

5x² - 6x + 1 = 0

5x² - x - 5x + 1 = 0

x(5x - 1) - (5x - 1) = 0

(5x - 1)(x - 1) = 0

5x - 1 = 0

5x = 1

x = 1 ÷ 5

x₁= 0,2

x - 1 = 0

x₂ = 1

Ответ: 0,2; 1

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для решения квадратного уравнения вида ax2+bx+c=0ax^2 + bx + c = 0, можно воспользоваться квадратным корнем:

x=b±b24ac2ax = \frac{{-b \pm \sqrt{{b^2 - 4ac}}}}{{2a}}

В вашем уравнении:

a=5,b=6,c=1a = -5, \quad b = 6, \quad c = -1

Подставим эти значения в формулу:

x=6±624(5)(1)2(5)x = \frac{{-6 \pm \sqrt{{6^2 - 4(-5)(-1)}}}}{{2(-5)}}

x=6±362010x = \frac{{-6 \pm \sqrt{{36 - 20}}}}{{-10}}

x=6±1610x = \frac{{-6 \pm \sqrt{{16}}}}{{-10}}

Теперь у нас есть два возможных значения для x:

  1. Когда используем знак "+":

x1=6+410=210=0.2x_1 = \frac{{-6 + 4}}{{-10}} = \frac{{-2}}{{-10}} = 0.2

  1. Когда используем знак "-":

x2=6410=1010=1x_2 = \frac{{-6 - 4}}{{-10}} = \frac{{-10}}{{-10}} = 1

Таким образом, у вас есть два корня этого уравнения: x1=0.2x_1 = 0.2 и x2=1x_2 = 1.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос