Вопрос задан 02.10.2023 в 09:34. Предмет Алгебра. Спрашивает Тикото Владислава.

Задайте формулой линейную функцию графика который проходит через точку ( -2; 1) параллельно прямой

y=9x–3​
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Цилинский Александр.

Ответ:

y=9x+19

Объяснение:

если прямая параллельна прямой y=9x–3​, то значит у нее тот же коэффициент наклона 9. То есть прямая имеет вид y=9x+b.

Найдем b. Подставим точку ( -2; 1) в уравнение прямой

1=9*(-2)+b

1=-18​+b

b=1+18=19

y=9x+19

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Если мы ищем линейную функцию, которая проходит через точку (2,1)(-2, 1) и параллельна прямой y=9x3y = 9x - 3, то обе эти функции имеют одинаковый наклон, равный 9.

Общий вид линейной функции выглядит как y=mx+by = mx + b, где mm - это наклон (или угловой коэффициент), а bb - y-интерсепт (точка, где график пересекает ось y).

Так как наша новая функция параллельна прямой y=9x3y = 9x - 3, то у нее тоже будет наклон m=9m = 9. Теперь мы можем использовать заданную точку (2,1)(-2, 1), чтобы найти значение bb.

Подставляя значения 2-2 и 11 в уравнение функции, получаем:

1=9(2)+b1 = 9(-2) + b

1=18+b1 = -18 + b

b=19b = 19

Таким образом, линейная функция, которая проходит через точку (2,1)(-2, 1) и параллельна прямой y=9x3y = 9x - 3, имеет вид:

y=9x+19y = 9x + 19

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос