Вопрос задан 30.09.2023 в 20:10. Предмет Алгебра. Спрашивает Яремов Коля.

1)2m²-2n²-4mn= 2)8p²-16+8= 3)12m⁵n+24m⁴n+12m³n= 4)(x²+2x)²= 5)81-(y²+6y)²=

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Berik Bekzat.

Ответ:

(2m-2n)²

смотри на фото)дуиаю так


0 0
Отвечает Наговицына Настя.

Ответ:

.................

Объяснение:


0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Let's tackle these step by step:

  1. 2m22n24mn2m^2 - 2n^2 - 4mn

    • This is a quadratic expression. We can factor it by grouping: 2m22n24mn=2m22mn2mn2n22m^2 - 2n^2 - 4mn = 2m^2 - 2mn - 2mn - 2n^2 =2m(mn)2n(mn)= 2m(m - n) - 2n(m - n) =2(mn)(m+n)= 2(m - n)(m + n)
  2. 8p216+88p^2 - 16 + 8

    • First, simplify the constants: 16+8=8-16 + 8 = -8 8p288p^2 - 8
    • Factor out the common factor, which is 8: 8(p21)8(p^2 - 1)
    • Now, factor the difference of squares: 8(p1)(p+1)8(p - 1)(p + 1)
  3. 12m5n+24m4n+12m3n12m^5n + 24m^4n + 12m^3n

    • Factor out the common factor, which is 12m3n12m^3n: 12m3n(m2+2m+1)12m^3n(m^2 + 2m + 1)
    • Notice that m2+2m+1m^2 + 2m + 1 is a perfect square trinomial: (m+1)2(m + 1)^2 12m3n(m+1)212m^3n(m + 1)^2
  4. (x2+2x)2(x^2 + 2x)^2

    • This is a square of a binomial. Square each term: (x2+2x)(x2+2x)(x^2 + 2x)(x^2 + 2x) =x4+4x3+4x2= x^4 + 4x^3 + 4x^2
  5. 81(y2+6y)281 - (y^2 + 6y)^2

    • This is a difference of squares: a2b2=(a+b)(ab)a^2 - b^2 = (a + b)(a - b) 81(y2+6y)2=(9+y2+6y)(9y26y)81 - (y^2 + 6y)^2 = (9 + y^2 + 6y)(9 - y^2 - 6y)

There you go! Let me know if you have any questions about these solutions.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос