
Log15 12,5+log5 10=0


Ответы на вопрос




The equation you've written, log15(12.5) + log5(10) = 0, involves logarithms with different bases. To solve it, you can use the properties of logarithms, particularly the change of base formula:
log_b(a) = log_c(a) / log_c(b)
Using this formula, we can rewrite the equation as:
(log(12.5) / log(15)) + (log(10) / log(5)) = 0
Now, we can combine the two logarithms as a single logarithm:
[log(12.5) / log(15) + log(10) / log(5)] = 0
To make it easier to work with, let's find a common denominator for the fractions inside the brackets:
[log(12.5) * log(5) + log(10) * log(15)] / [log(15) * log(5)] = 0
Now, the equation is in a form where we can solve it:
log(12.5) * log(5) + log(10) * log(15) = 0
To isolate the logarithmic terms, we can move one of them to the other side:
log(12.5) * log(5) = -log(10) * log(15)
Now, we can divide both sides by log(5):
log(12.5) = -log(10) * log(15) / log(5)
Now, you can use a calculator to compute the values of log(12.5), log(10), log(15), and log(5), and then solve for the unknown term. Remember to use the same base for all logarithms in your calculations (usually base 10 or base e).


Похожие вопросы

Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili