
Log2(3x+2)/log3(2x+3)<=0


Ответы на вопрос





To solve the inequality , we'll first find the critical points where the expression is equal to zero or undefined and then determine the sign of the expression in each interval between these critical points.
Find the critical points:
The numerator is undefined for , which means . So, we have a critical point at .
The denominator is undefined for , which means . So, we have another critical point at .
Create intervals based on the critical points:
We now have three intervals to consider: , , and .
Analyze the sign of the expression in each interval:
a. For : Both the numerator and denominator are negative. So, the expression is , which is positive.
b. For : The numerator is negative (since is positive), and the denominator is positive (since is positive). So, the expression is , which is negative.
c. For : Both the numerator and denominator are positive. So, the expression is , which is positive.
Combine the information:
- The inequality is satisfied when the expression is less than or equal to zero. Therefore, the solution to the inequality is .
So, the solution to the inequality is .


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili