
Sin^2x+3sinxcosx=4cos^2x


Ответы на вопрос

Sin^2x+3sinxcosx=4cos^2x
Sin²x + 3sinxcosx - 4cos²x = 0 делим на cos²x ≠ 0
tg²x + 3tgx - 4 = 0
tgx = t
t² + 3t - 4 = 0
t₁ = - 4
t₂ = 1
1) tgx = - 4
x₁ = arctg(-4) + πk, k ∈ Z
x₁ = - arctg(4) + πk, k ∈ Z
2) tgx = 1
x₂ = π/4 + πn, n ∈ Z



To solve the trigonometric equation sin^2(x) + 3sin(x)cos(x) = 4cos^2(x), we can use trigonometric identities to simplify and eventually find the solutions.
Let's start by using the Pythagorean identity: sin^2(x) + cos^2(x) = 1. We can rearrange this to get cos^2(x) = 1 - sin^2(x).
Now, let's substitute this value of cos^2(x) into the original equation:
sin^2(x) + 3sin(x)cos(x) = 4(1 - sin^2(x)).
Expand the right side:
sin^2(x) + 3sin(x)cos(x) = 4 - 4sin^2(x).
Bring all the terms to one side:
4sin^2(x) + 3sin(x)cos(x) - 4 = 0.
Now, we have a quadratic equation in terms of sin(x). Let's factor it if possible:
(4sin(x) - 1)(sin(x) + 4) = 0.
Now set each factor to zero and solve for sin(x):
4sin(x) - 1 = 0 4sin(x) = 1 sin(x) = 1/4
sin(x) + 4 = 0 sin(x) = -4 (This solution is not valid since the sine function is bounded between -1 and 1)
So, the valid solution for the original equation is:
sin(x) = 1/4.
Now, to find the corresponding values of cos(x), we can use the Pythagorean identity:
cos^2(x) = 1 - sin^2(x) cos^2(x) = 1 - (1/4)^2 cos^2(x) = 1 - 1/16 cos^2(x) = 15/16.
Taking the square root of both sides, we get two possible values for cos(x):
- cos(x) = sqrt(15)/4
- cos(x) = -sqrt(15)/4.
So, the solutions to the original equation are:
- sin(x) = 1/4 and cos(x) = sqrt(15)/4
- sin(x) = 1/4 and cos(x) = -sqrt(15)/4.


Похожие вопросы

Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili