
1) ㏒₀,₂16-5㏒₀,₂₅8 2) ㏒₂(7-8x)=2 3) ㏒(5-x)-㏒(1-x)=㏒2 4) ㏒²₄(x-3)-㏒₄(x-3)-2=0


Ответы на вопрос





To solve these logarithmic expressions and equations, I'll provide step-by-step solutions for each one:
- ㏒₀,₂16 - 5㏒₀,₂₅8:
Here, we are dealing with logarithms of base 2.
First, let's simplify the expression: ㏒₀,₂16 = log base 2 of 16 ㏒₀,₂258 = log base 2 of 258
Now, you can use the properties of logarithms to simplify the expression:
㏒₀,₂16 - 5㏒₀,₂258 = log₂16 - 5log₂258
Use the property: log₂(ab) = log₂a + log₂b
㏒₀,₂16 - 5㏒₀,₂258 = log₂(16 * 258) - log₂(258^5)
Now, calculate the values inside the logarithms:
㏒₀,₂16 - 5㏒₀,₂258 = log₂(4128) - log₂(258^5)
Next, use the property: log₂(a^n) = n * log₂(a)
㏒₀,₂16 - 5㏒₀,₂258 = log₂(4128) - 5 * log₂(258)
You can approximate the values using a calculator:
㏒₀,₂16 - 5㏒₀,₂258 ≈ 12 - 5 * 8.003 = 12 - 40.015 ≈ -28.015
So, ㏒₀,₂16 - 5㏒₀,₂258 is approximately -28.015.
- ㏒₂(7 - 8x) = 2:
In this equation, the logarithm is of base 2.
To solve for x, we need to isolate the logarithm expression:
Step 1: Rewrite the equation in exponential form: 2^2 = 7 - 8x
Step 2: Simplify the exponential expression: 4 = 7 - 8x
Step 3: Isolate x by moving the constant term to the other side: 8x = 7 - 4
Step 4: Divide by 8 to solve for x: x = (7 - 4) / 8 x = 3 / 8
So, the solution for the equation is x = 3/8.
- ㏒(5 - x) - ㏒(1 - x) = ㏒2:
In this equation, the base of the logarithm is not specified, so we assume it's a common logarithm (base 10).
Step 1: Combine the logarithms on the left side using the quotient rule of logarithms: ㏒[(5 - x) / (1 - x)] = ㏒2
Step 2: Convert the equation to exponential form: 10^(㏒[(5 - x) / (1 - x)]) = 10^(㏒2)
Step 3: Simplify the equation: (5 - x) / (1 - x) = 2
Step 4: Solve for x: Cross-multiply to eliminate the fraction: 5 - x = 2(1 - x)
Distribute 2 on the right side: 5 - x = 2 - 2x
Step 5: Isolate x on one side: -x + 2x = 5 - 2
Simplify: x = 3
So, the solution for the equation is x = 3.
- ㏒²₄(x - 3) - ㏒₄(x - 3) - 2 = 0:
In this equation, we are dealing with logarithms of base 24 and base 4.
Step 1: Combine the logarithms on the left side using the quotient rule of logarithms: ㏒(x - 3) / ㏒₂₄ - ㏒(x - 3) / ㏒₄ - 2 = 0
Step 2: Find common logarithms (base 10) for both ㏒₂₄ and ㏒₄: ㏒(x - 3) / ㏒10 - ㏒(x - 3) / ㏒2 - 2 = 0
Step 3: Simplify the equation using properties of logarithms: (㏒(x - 3) - ㏒(x - 3) * ㏒10 / ㏒2) - 2 = 0
Step 4: Cancel out the common logarithm: ㏒(x - 3) * (1 - ㏒10 / ㏒2) - 2 = 0
Step 5: Calculate the value inside the parenthesis: 1 - ㏒10 / ㏒2 ≈ 0.68
Step 6: Isolate ㏒(x - 3) by moving the constant term to the other side: ㏒(x - 3) ≈ 2 / 0.68
Step 7: Solve for x by converting the equation to exponential form: x - 3 ≈ 10^(2 / 0.68)
Step 8: Simplify: x - 3 ≈ 10^(2.9412)
Step 9: Solve for x: x ≈ 10^(2.9412) + 3
Now, use a calculator to evaluate the expression:
x ≈ 880.83 + 3 x ≈ 883.83
So, the approximate solution for the equation is x ≈ 883.83.


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili