
-4; -2; 0 - арефмитическая прогрессия. Найти S10


Ответы на вопрос

Решение на фото в приложении.




To find the sum of the first 10 terms of an arithmetic progression, we can use the formula for the sum of an arithmetic progression:
Sₙ = (n/2) * (a₁ + aₙ),
where Sₙ is the sum of the first n terms, a₁ is the first term, aₙ is the nth term, and n is the number of terms.
In this case, we are given the first three terms of the arithmetic progression:
a₁ = -4 (first term) a₂ = -2 (second term) a₃ = 0 (third term)
We need to find a₉, which is the ninth term, since we want to find S₁₀ (the sum of the first 10 terms).
To find aₙ, we can use the formula for the nth term of an arithmetic progression:
aₙ = a₁ + (n - 1) * d,
where d is the common difference between consecutive terms.
In our case, we can find d using the difference between any two consecutive terms:
d = a₂ - a₁ d = (-2) - (-4) d = 2.
Now, let's find a₉:
a₉ = a₁ + (9 - 1) * d a₉ = -4 + 8 a₉ = 4.
Now that we have a₁ and a₉, we can find S₁₀:
S₁₀ = (10/2) * (a₁ + a₉) S₁₀ = (10/2) * (-4 + 4) S₁₀ = 5 * 0 S₁₀ = 0.
Therefore, the sum of the first 10 terms of the arithmetic progression is 0.


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili