
Log(14)7=a, log(14)5=b. Найдите log(28)35


Ответы на вопрос




To find the value of log(28)35 using the given information, we can use the properties of logarithms. Specifically, we'll use the change of base formula, which states:
log(base a) b = log(base c) b / log(base c) a
where "c" can be any base we choose.
Given: log(14)7 = a log(14)5 = b
Now, let's express log(28)35 in terms of a and b:
log(28)35 = log(14 * 2)35
We can split the logarithm using the properties of logarithms:
log(28)35 = log(14)35 + log(2)35
Now, let's use the change of base formula for each term:
log(14)35 = log(35) / log(14) log(2)35 = log(35) / log(2)
Therefore, we get:
log(28)35 = (log(35) / log(14)) + (log(35) / log(2))
Now, substitute the given values:
log(28)35 = (log(35) / a) + (log(35) / b)
Now, since log(35) is common in both terms, we can factor it out:
log(28)35 = log(35) * (1/a + 1/b)
Finally, substitute the given values of a and b:
log(28)35 = log(35) * (1/log(14) + 1/log(14))
Now, simplify the expression:
log(28)35 = log(35) * (2 / log(14))
So, the value of log(28)35 in terms of a and b is:
log(28)35 = 2 * (log(35) / log(14))
You can calculate the approximate value using a calculator if needed.


Похожие вопросы

Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili