
(x-2)^2 (x-4) /x+2<0


Ответы на вопрос





To solve the inequality , we need to find the values of that satisfy the inequality. To do this, we can follow these steps:
Step 1: Find the critical points by setting the numerator and denominator equal to zero and solving for . Step 2: Determine the sign of the expression in each interval formed by the critical points. Step 3: Identify the intervals where the expression is negative (less than zero).
Let's start with step 1:
Step 1: Find the critical points: The critical points occur when the numerator or the denominator is equal to zero. Numerator: This gives us two critical points: and .
Denominator: This gives us another critical point: .
Step 2: Determine the sign of the expression in each interval: We now have four intervals: , , , and . We will check the sign of the expression in each interval.
For : Choose (a value less than -2) , which is negative.
For : Choose (a value between -2 and 2) , which is positive.
For : Choose (a value between 2 and 4) , which is negative.
For : Choose (a value greater than 4) , which is positive.
Step 3: Identify the intervals where the expression is negative: The expression is negative in the intervals and .
So, the solution to the inequality is .


Похожие вопросы

Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili