
Вопрос задан 29.07.2023 в 08:15.
Предмет Алгебра.
Спрашивает Березенцева Кристина.
Найти производную y=x^18 y=x^-6 y=x^-1/8


Ответы на вопрос

Отвечает Хисматуллин Данил.
1) у'=18x^17
2) y'=-6x^-7
3) y'=-1/8y^-9/8
2) y'=-6x^-7
3) y'=-1/8y^-9/8



Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.
Чтобы найти производные данных функций, используем правило дифференцирования степенной функции и общее правило дифференцирования произведения функций (если необходимо). Пусть y = f(x), тогда:
y = x^18: dy/dx = 18x^(18-1) = 18x^17
y = x^(-6): Здесь используем правило дифференцирования степенной функции с отрицательным показателем: dy/dx = -6x^(-6-1) = -6x^(-7) = -6/x^7
y = x^(-1/8): Здесь также используем правило дифференцирования степенной функции с отрицательным показателем: dy/dx = (-1/8) * x^((-1/8)-1) = (-1/8) * x^(-9/8) = (-1/8) / x^(9/8)
Таким образом, мы получили производные данных функций:
- dy/dx = 18x^17
- dy/dx = -6/x^7
- dy/dx = (-1/8) / x^(9/8)


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili