
Решение неравенство x^2-64/x>0


Ответы на вопрос

"+" "-" "+"
_(0)_(4)_
Ответ: x∈(-∞; 0)U(4; +∞)



To solve the inequality , we need to find the intervals for which the expression is greater than zero. To do this, follow these steps:
Step 1: Factor the expression. Step 2: Determine the critical points (where the expression becomes zero or undefined). Step 3: Create a sign chart to find the intervals where the expression is positive. Step 4: Express the solution as an inequality.
Let's proceed with the steps:
Step 1: Factor the expression. The expression can be factored as .
Step 2: Determine the critical points (where the expression becomes zero or undefined). The critical points occur when the numerator is equal to zero (i.e., ) or when the denominator is zero (i.e., ).
So the critical points are .
Step 3: Create a sign chart to find the intervals where the expression is positive.
We'll create a sign chart with the intervals separated by the critical points (-8, 0, 8):
Step 4: Express the solution as an inequality.
From the sign chart, we can see that the expression is positive in two intervals: and . To express this as an inequality, we combine the two intervals:
Thus, the solution to the inequality is .


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili