
3/x-3 - x+15/x^2-9 - 2/x


Ответы на вопрос

ответ: ЧИСЛИТЕЛЬ: -х(в 2-ой степени)-3х+16
ЗНАМЕНАТЕЛЬ: х



To simplify the expression, let's find a common denominator for the three fractions:
The common denominator for the three fractions is (x^2 - 9), which can be factored as (x + 3)(x - 3).
Now, we'll rewrite each fraction with the common denominator:
3/(x - 3): Since the common denominator is (x + 3)(x - 3), we'll multiply both the numerator and denominator by (x + 3) to get: (3 * (x + 3))/((x + 3)(x - 3))
(x + 15)/(x^2 - 9): We already have the common denominator, so no need to modify this fraction.
2/x: To express this fraction with the common denominator, we'll multiply both the numerator and denominator by (x + 3): (2 * (x + 3))/((x + 3)(x - 3))
Now, the expression becomes:
[(3 * (x + 3))/((x + 3)(x - 3))] - [(x + 15)/(x^2 - 9)] - [(2 * (x + 3))/((x + 3)(x - 3))]
Next, let's combine the fractions:
To combine the fractions, we need to find a common denominator for the first and third fractions, which is (x + 3)(x - 3). Once we have that, we can combine the fractions into one.
[(3 * (x + 3) - (x + 15) - (2 * (x + 3)))/((x + 3)(x - 3))]
Now, let's simplify the expression:
[3x + 9 - x - 15 - 2x - 6)/((x + 3)(x - 3))]
Combine like terms in the numerator:
[3x - x - 2x + 9 - 15 - 6)/((x + 3)(x - 3))]
Simplify further:
(0x - 12)/((x + 3)(x - 3))
Simplify the numerator (0x - 12 = -12):
-12/((x + 3)(x - 3))
So, the simplified expression is:
-12/((x + 3)(x - 3))


Похожие вопросы

Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili