Вопрос задан 26.07.2023 в 23:46. Предмет Алгебра. Спрашивает Бугаёв Сергей.

64x4y6=8xy5*.............. (4,6,5- степени) (-3ab3)2 *................=18 а в11 (3,2,11- степени)

-х15у9= ............-х6у4 (15,9,6,4- степени) .........*(4х3у)2= 32х12у7 (3,2,12,7- степени)(3в3)2*...........=72в18 (3,2,18- степени)
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Коваленко Макс.

64 {x}^{4}  {y}^{6}  = 8x {y}^{5}  \times 8 {x}^{3} y \\  ( - 3a {b}^{3} ) ^{2}  \times 2 {a}^{ - 1}  {b}^{5}  = 9 {a}^{2}  {b}^{6}  \times 2 {a}^{ - 1}  {b}^{5}  = 18a {b}^{11}  \\  -  {x}^{15}  {y}^{9}  =  {x}^{9}  {y}^{5}  \times  (-  {x}^{6}  {y}^{4} )
32 {x}^{12} {y}^{7} =   ...... \times (4 {x}^{3} y) ^{2}  = ...... \times 16 {x}^{6}  {y}^{2}  = 2 {x}^{6}  {y}^{5}  \times 16 {x}^{6}  {y}^{2}  \\  72 {b}^{18}  = {(3 {b}^{3} )}^{2}  \times ...... = 9 {b}^{6}  \times 8 {b}^{12}
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

To simplify the expressions, let's perform the indicated operations step-by-step:

  1. 64x^4y^6 = 8xy^5 * ......... (4,6,5- powers)

To find the missing term, we need to equate the powers of x and y on both sides of the equation. We can do this as follows:

For x: 4 = 1 (from 8x) + x (unknown term) 4 = 1 + x x = 4 - 1 x = 3

For y: 6 = 5 (from 8xy^5) + y (unknown term) 6 = 5 + y y = 6 - 5 y = 1

So the missing term is 3x^3y.

Thus, the equation becomes: 64x^4y^6 = 8xy^5 * 3x^3y or simply: 64x^4y^6 = 24x^4y^6

  1. (-3ab^3)^2 * ......... = 18a^11 (3,2,11- powers)

To find the missing term, we follow a similar approach:

For a: 2 = 1 (from -3a) + a (unknown term) 2 = 1 + a a = 2 - 1 a = 1

For b: 3 = 2 (from -3ab^3) + b (unknown term) 3 = 2 + b b = 3 - 2 b = 1

So the missing term is 1a^1b^1 or simply ab.

Thus, the equation becomes: (-3ab^3)^2 * ab = 18a^11

  1. x^15y^9 = ......... - x^6y^4 (15,9,6,4- powers)

To find the missing term, we equate the powers of x and y on both sides:

For x: 15 = x (unknown term) + 6 (from -x^6y^4) x = 15 - 6 x = 9

For y: 9 = y (unknown term) + 4 (from -x^6y^4) y = 9 - 4 y = 5

So the missing term is x^9y^5.

Thus, the equation becomes: x^15y^9 = x^9y^5 - x^6y^4

  1. (4x^3y)^2 = 32x^12y^7 (3,2,12,7- powers)

To find the missing term, we equate the powers of x and y on both sides:

For x: 2 * (3) = 12 (from 32x^12y^7) + x (unknown term) 6 = 12 + x x = 6 - 12 x = -6

For y: 2 * (1) = 7 (from 32x^12y^7) + y (unknown term) 2 = 7 + y y = 2 - 7 y = -5

So the missing term is -6x^(-6)y^(-5).

Thus, the equation becomes: (4x^3y)^2 = 32x^12y^7 - 6x^(-6)y^(-5)

  1. (3b^3)^2 * ....... = 72b^18 (3,2,18- powers)

To find the missing term, we follow a similar approach:

For b: 2 * (3) = 18 (from 72b^18) + b (unknown term) 6 = 18 + b b = 6 - 18 b = -12

So the missing term is -12b.

Thus, the equation becomes: (3b^3)^2 * (-12b) = 72b^18

I've filled in the missing terms according to the patterns you provided. Please double-check the expressions for accuracy as mistakes can easily occur with complex equations. If you have any other questions or need further assistance, feel free to ask!

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос