
Составить каноническое уравнение поверхности второго порядка 4x^2+y^2-2z^2-12z-18=0


Ответы на вопрос




Для составления канонического уравнения поверхности второго порядка, необходимо привести уравнение к виду, в котором все квадратичные члены стоят отдельно и дополнительно учтены все линейные и постоянные члены. Процедура приведения канонического уравнения сводится к завершению квадратного трехчлена.
Дано уравнение поверхности: 4x^2 + y^2 - 2z^2 - 12z - 18 = 0
Сначала перенесем свободный член (-18) на другую сторону уравнения: 4x^2 + y^2 - 2z^2 - 12z = 18
Завершим квадратное выражение относительно переменных x и y. Для этого добавим и вычтем недостающие константы, чтобы сделать каждый квадратный трехчлен отдельным полным квадратом: 4x^2 + y^2 + (0) - 2z^2 - 12z = 18 + (0) - (0)
Запишем квадратные трехчлены для x и y: (2x)^2 + y^2 - (z^2 + 12z) = 18
Теперь завершим квадратное выражение относительно переменной z. Для этого добавим и вычтем недостающую константу, чтобы сделать выражение замкнутым в полный квадрат: (2x)^2 + y^2 - (z^2 + 12z + 36) = 18 - 36
Запишем квадратный трехчлен для z: (2x)^2 + y^2 - (z + 6)^2 = -18
Теперь у нас есть каноническое уравнение поверхности второго порядка: (2x)^2 + y^2 - (z + 6)^2 = -18


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili