
Решение неравенства 2x^2≥x


Ответы на вопрос




To solve the inequality 2x^2 ≥ x, we need to find the values of x that satisfy the inequality. Here's how you can do it step-by-step:
Step 1: Move all the terms to one side of the inequality to set it to zero: 2x^2 - x ≥ 0
Step 2: Factor out common terms (in this case, x): x(2x - 1) ≥ 0
Step 3: Find the critical points by setting each factor equal to zero and solving for x: x = 0 (from the factor x = 0) 2x - 1 = 0 ⇒ 2x = 1 ⇒ x = 1/2
Step 4: Now we have three intervals on the number line: (-∞, 0), (0, 1/2), and (1/2, ∞). Test a value within each interval to determine the sign of the expression within the interval.
For x < 0, let's use x = -1: 2(-1)^2 - (-1) = 2 - (-1) = 3 (positive)
For 0 < x < 1/2, let's use x = 1/4: 2(1/4)^2 - (1/4) = 2(1/16) - (1/4) = 1/8 - 1/4 = -1/8 (negative)
For x > 1/2, let's use x = 1: 2(1)^2 - (1) = 2 - 1 = 1 (positive)
Step 5: Analyze the signs in each interval:
- (-∞, 0): The expression 2x^2 - x is positive.
- (0, 1/2): The expression 2x^2 - x is negative.
- (1/2, ∞): The expression 2x^2 - x is positive.
Step 6: Determine the solution to the inequality:
Since the inequality is 2x^2 - x ≥ 0, we are looking for the values of x that make the expression non-negative (positive or zero).
Thus, the solution is the combination of intervals where the expression is non-negative: (-∞, 0] and [1/2, ∞).
In interval notation, the solution is: x ∈ (-∞, 0] ∪ [1/2, ∞).


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili