
Sin^4x + cos^4x = 0.5


Ответы на вопрос




To solve the trigonometric equation sin^4(x) + cos^4(x) = 0.5, we can use some trigonometric identities and algebraic manipulation. First, we'll use the Pythagorean identity:
sin^2(x) + cos^2(x) = 1
Next, we can rewrite sin^4(x) and cos^4(x) as follows:
sin^4(x) = (sin^2(x))^2 cos^4(x) = (cos^2(x))^2
Now, let's substitute these expressions into the original equation:
(sin^2(x))^2 + (cos^2(x))^2 = 0.5
We notice that this expression looks similar to the Pythagorean identity, and we can simplify it further:
(sin^2(x))^2 + (cos^2(x))^2 = sin^2(x) + cos^2(x)
Using the Pythagorean identity sin^2(x) + cos^2(x) = 1, we have:
(sin^2(x))^2 + (cos^2(x))^2 = 1
Now, we can solve for (sin^2(x))^2:
(sin^2(x))^2 = 1 - (cos^2(x))^2
Taking the square root of both sides:
sin^2(x) = ±√(1 - (cos^2(x))^2)
Now, let's solve for sin(x):
sin(x) = ±√(1 - (cos^2(x))^2)
Since the value of sin(x) is between -1 and 1, the value inside the square root must be non-negative:
1 - (cos^2(x))^2 ≥ 0
Solving for cos^2(x):
(cos^2(x))^2 ≤ 1
Taking the square root of both sides:
|cos^2(x)| ≤ 1
Since the cosine of any angle is always between -1 and 1, the absolute value is not necessary:
cos^2(x) ≤ 1
This inequality is always true for any angle, which means that the original equation has an infinite number of solutions. In other words, there are infinitely many values of x that satisfy the equation sin^4(x) + cos^4(x) = 0.5.


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili