
Sqrt (x^2-4x+3)=sqrt (3x+a) Найти значения a, при котором уравнение имеет один корень


Ответы на вопрос

///////////////////////////////////////////





To find the values of "a" for which the equation has a single root, we need to set the discriminant of each square root expression to zero. This is because when the discriminant is zero, the square root expression will have a double root, resulting in a single solution for the entire equation.
The equation is: √(x^2 - 4x + 3) = √(3x + a)
Step 1: Set the discriminant of the first square root expression to zero: x^2 - 4x + 3 = 0
Step 2: Solve for "x" using the quadratic formula: x = [4 ± √(4^2 - 4 * 1 * 3)] / 2 x = [4 ± √(16 - 12)] / 2 x = [4 ± √4] / 2 x = [4 ± 2] / 2
So, the two possible values of "x" are: x₁ = (4 + 2) / 2 = 3 x₂ = (4 - 2) / 2 = 1
Step 3: For the equation to have a single root, both square root expressions on the left and right sides of the equation must yield the same value for "x". So, we need to substitute both "x₁" and "x₂" into the right side of the equation and find the corresponding values of "a" for each case.
For x = 3: √(3 * 3 + a) = √(9 + a) 3 + a = 9 + a a = 9 + a - 3 a = 6
For x = 1: √(3 * 1 + a) = √(3 + a) 1 + a = √(3 + a)² 1 + a = 3 + a 1 = 3 (Not possible, as the equation does not hold true for x = 1)
Thus, the equation has a single root when "a" is equal to 6. For any other value of "a," the equation will either have two distinct roots or no real roots.


Похожие вопросы

Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili